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Fig 4. Success Rate of nsPEF ablation for different field strengths. The threshold field strength (T) was
2.3 kV for 2.3 mm electrode separation and 4 kV for 4 mm electrode separation. The bars show combined
results for both field strengths, relative to the thresholds.

doi:10.1371/journal.pone.0144833.g004

thresholds stated above never succeeded in creating a lesion (n = 7). All these data are from sin-
gle ablations; they are complemented by the data for longer lesions below (a blocking lesion
implies that all individual ablations are blocking).

Effect of shock amplitude on geometry of ablated volume

When we varied the shock amplitude while keeping all other shock parameters fixed (4 mm
electrodes spacing, 20 pulses at 1 Hz) and subsequently stained the tissue with PI, we found a
characteristic dependency of the geometry of the ablated volume on shock amplitude, shown
in Fig 4. For a small shock amplitude (1 kV/cm), we observe ablation only in limited areas
around the ablation electrodes (see Fig 5A). For a larger shock amplitude (2 kV/cm), the areas
around the electrodes merge so that a contiguous lesion is created (see Fig 5B).

Computed field distributions for both 1 and 2 kV/cm are shown in Fig 5C and 5D. They
support the idea that tissue dies whenever the local field strength is above a critical threshold.
Comparing Fig 5A and 5C and Fig 5B and 5D, we estimate that this critical threshold should
be in the range of 3-5 kV/cm.

Longer lesions with multiple nsPEF applications

We created longer lesions by placing single nsPEF ablations along a line, just like lesions are
created using RF ablation. For electrode spacing 2.3 mm, our lesions consisted of 4-5 single
ablations. The subsequent electrode positions were shifted ~ 0.7 more by ~3 mm, so that the
gap was ~0.7 mm and the lesion length was ~15 mm. For electrode spacing 4 mm, we used 3-4
single ablations and electrode positions were shifted by 4.7 mm, leading to lesion lengths of
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kV/cm

Fig 5. Ablated volume varies with shock amplitude. Black dots indicate the positions of the ablation
electrodes, surface fluorescence of propidium iodide (red) shows which part of the tissue has been ablated.
Ablation electrodes are 4 mm apart. A: Shock amplitude 1 kV, B: Shock amplitude 2 kV. C: Computed field
distribution (|E|) for a 1 kV shock. D: Computed field distribution for a 2 kV shock.

doi:10.1371/journal.pone.0144833.9005

~16 mm. Based on our experience with single application, we chose set our standard protocol
to 6 pulses at 3 Hz. The field strength was set to 2.3 kV for 2.3 mm electrode separation and to
4.3 kV for 4 mm electrode separation (i.e. ~10 kV/cm if calculated simply as "voltage over dis-
tance"). A representative example with 2.3 mm electrode separation is shown in Fig 6.

Panel B shows that electrical activity has ceased where nsPEF was applied. Panel C shows
that activation propagates around the treated region (as indicated by the arrows), and the
smooth change in activation time indicates that this propagation happens with approximately
constant speed. While activation also propagates from the stimulation site towards the lesion,

u u 56ms
0 ms
Fig 6. Evaluation of nsPEF lesion (compare Fig 3 for details). A: Photograph of the cardiac surface after ablation. The pairs of black dots mark the

locations of the (successive) positions of the ablation electrodes, the black diagonal line in the upper right is the stimulation electrode. B: Action potential
amplitude map after ablation. C: Activation map after ablation.

doi:10.1371/journal.pone.0144833.g006
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the abrupt jump in activation time at the lesion is strong evidence that conduction block has
indeed been achieved.

Lesion statistics

We created a total of 16 lesions in 12 rabbit hearts. Based on our single ablations, we expected
consistent ablation success with low individual ablation times (< 2 s), and indeed, all lesions
created were nonconducting (16/16). For 2.3 mm electrode separation, we assessed the lesion
width both with PI stains and TTC stains (see Fig 7). For PI stains (n = 7) we found an average
width of 2.3+/-0.2 mm, while with TTC stains (n = 7), the average was 3.1+/-0.56 mm. For 4
mm electrode separation (n = 2), the evaluation of the lesion with TTC staining gave a thick-
ness between 5 and 6 mm.

3D Geometry of lesions

We also investigated the 3D geometry of selected lesions we created. Fig 8 shows TTC staining
in a series of sections from epi- to endocardium (Panel A) and a 3D reconstruction of the lesion
geometry (Panel B). The section geometry is far more consistent from epi- to endocardium
than is typical for RF or cryoablation [10]. Also, the boundary of the ablated region is very
sharp; the zoomed picture (Panel C) shows that even at the level of individual cardiac fibers
there is a very abrupt transition from unstained to almost fully stained tissue.
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Fig 7. Lesion width statistics. For shocks of 2.3 kV over 2.3 mm, we evaluated lesion width in some hearts
with TTC staining and in other hearts with PI staining. For shock of 4 kV over 4 mm, we evaluated lesion width
in all hearts with TTC staining. Bar heights show averages, error bars indicate standard deviations.

doi:10.1371/journal.pone.0144833.g007
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endo

400 um

Fig 8. 3D reconstruction of the geometry of the ablated volume. A: A stack of TTC-stained sections of
the lesion. White and red areas identify dead and live tissues, respectively. Sections are 300 um thick. B:
Three-dimensional rendering of the lesion geometry, obtained from the sections in Panel A. The red bars
indicate the successive positions of the ablation electrodes. C: Zoom into one of the TTC-stained sections at
the boundary of the ablated volume.

doi:10.1371/journal.pone.0144833.9g008

Ablation Speed

We were able to create non-conducting lesion with 6 pulses delivered at 3 Hz in every attempt.
This corresponds to a treatment time of 1.67 s per location. We also tried to achieve ablation
with single pulses, but even at field strengths of 5-6 kV, the maximum that our generator could
supply, we were not able to create lesions consistently.

Thermal effects

The amount energy deposited per pulse can be computed from the shock parameters and the
generator capacitance (3.1 nF), and it is less than 8 m]J (for 2.3 kV, a typical pulse amplitude).
Even with 20 pulses the total energy is below 200 m] (compared to typically ~1,000 J per site
for RF ablation). In direct experimental measurements at the midpoint between the electrodes,
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we were not able to detect any temperature increase after the shock, indicating that the increase
was smaller than ~0.1°C.

Discussion

We have demonstrated that using nsPEFs, we can reliably ablate myocardial tissue with more
consistent lesion cross section than RF/cryoablation, in a fraction of the time, and without ther-
mal side effects. Lesion width was consistent and could be adjusted between 2 and 5.5 mm by
choosing different electrode distances and pulse amplitudes.

Implications for recurrence

Atrial fibrillation usually recurs when pulmonary vein (PV) isolation lesions become conduc-
tive again [9]. While the precise mechanism for the loss of lesion integrity is not known, it is
reasonable to assume that lesions most easily become conductive at locations at which they are
particularly narrow (or even have a gap). It appears that a promising approach to prolong
lesion integrity is to make lesions more uniform in width, specifically avoiding that the width is
below some minimum width anywhere along the lesion. Our data suggest that nsPEF ablation
may give electrophysiologists the tools to achieve such greater lesion uniformity.

Absence of thermal effects

The complete absence of thermal effects and the associated complications side effects is a
major advantage of nsPEF ablation over RF and cryoablation. RF ablation suffers from signifi-
cant rates of major complications [12,13]. Esophageal injuries are common [29] and can in
extreme, rare [30] cases lead to fistulae, which are associated with high mortality [31]. PV ste-
nosis is another important complication that was reported to occur in 0 to 19% (mean, 2%;
median, 3.1%) after 2004 [32]. It is possible that the nsPEF rates for PV stenosis will be lower
(PV stenosis is a consequence of the inflammatory response [33,34], which may be aggravated
by heating). Compared to cryoablation, the elimination of phrenic nerve palsy [35] would be a
major improvement. For stroke, another important complication of thermal ablation, it is less
clear how often it is a direct consequence of thermal effects, but a since nsPEF ablation excludes
the risks of charring and thrombus formation, it should provide some benefit here as well.

Speed of applications

Since nsPEF ablation requires only requires less than 2 seconds per ablation site, it is realistic to
assume that overall procedure times, e.g. for AF ablation, can be reduced substantially. Such a
reduction will reduce the overall surgical risk, reduce the stress on patients, and free up
resources of the hospitals that are expected to perform more and more ablation procedures.

Effect of shock amplitude on lesion geometry

Our experimental finding that smaller shock amplitudes lead to ablation only in the vicinity of
the electrodes, while larger shock amplitudes ablate the whole region between the electrode is
consistent with similar experiments performed in 3D in-vitro tumor models [36] as well as
computations of field distributions [37]. For 3D in-vitro tumor models, a critical field that pre-
dicted cell death was also identified [36].

While we get good qualitative agreement between our experiments and model, we recognize
that our model excludes important electrical properties of the myocardium, in particular its
anisotropic conductivity and the fact that the direction of highest conductivity changes across
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the myocardial wall ("twisted anisotropy”). We are in the process of developing a model that
includes these features of cardiac tissue.

Comparison to DC and pulsed electric fields of longer duration

There is a long history of DC ablation, in fact DC used to be the standard modality of thermal
ablation before it was established that RF has lower complication rates [38,39]. Also, pulsed
electric fields have been used before for ablation of cardiac tissue [40-42], although these stud-
ies used longer pulses (in the micro- and millisecond range) and much higher ablation energies.

Ablation with millisecond pulses has been attempted by placing circular electrodes on pig
ventricular myocardium and applying defibrillator shocks of 100-200] [41]. While lesion
depths up to 7 mm were achieved, the lesions were not uniformly transmural. Microsecond
pulses were successfully used to create nonconducting lesions in pig atrial appendages,
although with energies approximately 1,000 times higher than those presented here [40].

The fact that we demonstrate nsPEF ablation here with a fraction of the applied energy sug-
gests that nsPEF ablation is more efficient for ablation than longer pulses. This result is consis-
tent with theoretical analyses that suggest that nsPEF ablation electroporates cells in a tissue
more uniformly. It has been shown in modeling studies that the strong fields used for nanosec-
ond pulses electroporate all cells indiscriminately, while the weaker fields associated with lon-
ger pulses lead to spatially heterogeneous, incomplete electroporation [26,43]. Recent
experiments in rat embryonic cardiomyocytes likewise suggest that nsPEF electroporates cells
more uniformly that millisecond pulsed electric fields [44]. While it would be in principle pos-
sible to generate pulses that are both strong and long, such pulses would deposit large energies,
which would lead to unwanted thermal effects. Nanosecond pulses also have the benefit that it
has already been shown that besides ablating cells via necrosis, they can also ablate them via
apoptosis [45,46].

Clinical application of nsPEFs ablation

In this paper, we are demonstrating the principle of nsPEF ablation in isolated hearts. In clini-
cal practice, nsPEF ablation could either be performed via surgical clamps during open heart
surgery, or using a catheter (just as RF- or cryoablation). For nsPEF ablation during open heart
surgery, surgical clamps similar to those used in RF ablation [47] could be equipped with arrays
of penetrating electrodes to allow the creation of extended lesions with a single nsPEF applica-
tion. The development of this technology is straightforward and we plan to move it towards
clinical practice first. For nsPEF catheter ablation, retractable penetrating electrodes would be
placed in a catheter similar to those used in RF ablation. The thin, sharpened electrodes can be
inserted into the myocardium with small contact force. Note that the wall thickness of the rab-
bit ventricles (2-4 mm) closely matches that of the human atria, which would be one important
target for nsPEF ablation. Ventricular ablation, while performed less commonly, is also a very
important target due to the grave risk of ventricular tachyarrhythmias that patients receiving
ventricular typically carry. The substantially thicker human ventricles would not pose a special
challenge to our nsPEF ablation approach; the electrode length would be increased accordingly.
It is reasonable to expect that the consistent cross section of lesions that we observe, and that is
due to the translational symmetry of our electrode configuration across the wall, would also be
observed in thicker tissue (because the translational symmetry would still be given).

Arrhythmia induction

An important concern regarding shock application in a clinical setting is that shocks may
induce fibrillation in the patient. In our rabbit model, nsPEFs never induced fibrillation that
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lasted long enough for us to observe it (several seconds would be detectable for us), but it is
well-known that larger species such as human, dog, and pig are more prone to the induction of
fibrillation [48]. In fact, application of microsecond shocks to pig heart frequently does induce
fibrillation. This problem can, however, be addressed by timing the shock application so that it
occurs right after the QRS complex (i.e. when all of the myocardium is depolarized) [49].

Limitations

This study has several limitations. Even though the consistent width of our lesions suggests
that recurrence will be low, this has not been tested experimentally. Long-term survival studies
that are necessary to address this limitation, and we are currently planning such studies. Also,
it would be desirable to have an electrode configuration in which the electrodes don't penetrate
the tissue multiple times. We are currently testing an alternative electrode configuration in
which one electrode is places on the epicardium and the other electrode on the endocardium.
This new configuration is straightforward to implement for open heart surgery, but for a cathe-
ter-based approach, there will be challenges related to the alignment of catheters.

Conclusions

Ablation with nsPEF is a promising alternative to RF and cryoablation that may overcome lim-
itations of current clinical practice. Chronic animal studies and studies in large animal hearts
are needed to evaluate the clinical potential of nsPEF ablation.
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