2014

The Impact of Changing Surface Ocean Conditions on the Dissolution of Aerosol Iron

Matthew P. Fishwick

Peter N. Sedwick
Old Dominion University, Psedwick@odu.edu

Maeve C. Lohan

Paul J. Worsfold

Kristen N. Buck

See next page for additional authors

Follow this and additional works at: http://digitalcommons.odu.edu/oeas_fac_pubs

Part of the Biogeochemistry Commons, and the Oceanography Commons

Repository Citation
http://digitalcommons.odu.edu/oeas_fac_pubs/92

Original Publication Citation

This Article is brought to you for free and open access by the Ocean, Earth & Atmospheric Sciences at ODU Digital Commons. It has been accepted for inclusion in OEAS Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
The impact of changing surface ocean conditions on the dissolution of aerosol iron

Matthew P. Fishwick¹, Peter N. Sedwick², Maeve C. Lohan¹, Paul J. Worsfold¹, Kristen N. Buck³,4, Thomas M. Church³, and Simon J. Ussher¹

¹School of Geography, Earth, and Environmental Sciences, University of Plymouth, Plymouth, UK, ²Ocean, Earth, and Atmospheric Sciences, Old Dominion University, Norfolk, Virginia, USA, ³Bermuda Institute of Ocean Sciences, St. George’s, Bermuda, ⁴Now at College of Marine Science, University of South Florida, St. Petersburg, Florida, USA, ⁵College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware, USA

Abstract The proportion of aerosol iron (Fe) that dissolves in seawater varies greatly and is dependent on aerosol composition and the physicochemical conditions of seawater, which may change depending on location or be altered by global environmental change. Aerosol and surface seawater samples were collected in the Sargasso Sea and used to investigate the impact of these changing conditions on aerosol Fe dissolution in seawater. Our data show that seawater temperature, pH, and oxygen concentration, within the range of current and projected future values, had no significant effect on the dissolution of aerosol Fe. However, the source and composition of aerosols had the most significant effect on the aerosol Fe solubility, with the most anthropogenically influenced samples having the highest fractional solubility (up to 3.2%). The impact of ocean warming and acidification on aerosol Fe dissolution is therefore unlikely to be as important as changes in land usage and fossil fuel combustion. Our experimental results also reveal important changes in the size distribution of soluble aerosol Fe in solution, depending on the chemical conditions of seawater. Under typical conditions, the majority (77–100%) of Fe released from aerosols into ambient seawater existed in the colloidal (0.02–0.4 μm) size fraction. However, in the presence of a sufficient concentration of strong Fe-binding organic ligands (10 nM) most of the aerosol-derived colloidal Fe was converted to soluble Fe (<0.02 μm). This finding highlights the potential importance of organic ligands in retaining aerosol Fe in a biologically available form in the surface ocean.

1. Introduction

During the past 20 years, extensive investigations of the marine biogeochemistry of iron (Fe) have demonstrated that this micronutrient limits primary production in vast areas of the world ocean [e.g., Martin et al., 1994; Coole et al., 1996; Boyd et al., 2000; Takeda and Tsuda, 2005]. In particular, the supply of Fe controls phytoplankton growth in high-nutrient, low-chlorophyll waters, where the macronutrients nitrate and phosphate are replete. In these regions, there is the potential for increased primary production, carbon export to the deep ocean, and associated atmospheric carbon dioxide (CO₂) drawdown to be realized by increased inputs of Fe [Martin, 1990; Kohfeld and Ridgwell, 2009]. Atmospheric deposition of aerosols is an important pathway by which Fe is introduced into the surface waters of the open ocean [Duce, 1986; Martin and Gordon, 1988; Jickells et al., 2005]. The percentage of the total Fe contained within aerosols that dissolves in seawater, known as the fractional solubility of aerosol Fe (%Feᵣ), is known to vary substantially, depending on a number of factors. A review by Sholkovitz et al. [2012] notes that empirical estimates of the %Feᵣ range from <0.1% to >95% (for ~1100 published values). Factors affecting the dissolution of aerosol Fe have been discussed by Baker and Crook [2010] and include the source and composition of the aerosols [Bonnet and Guieu, 2004], the particle size [Baker and Jickells, 2006], the concentration of particles deposited at the ocean surface [Zhuang et al., 1990], and atmospheric conditioning [Zhu et al., 1997]. It is therefore important to consider differences in aerosol dissolution when constructing global biogeochemical models that include Fe input to the ocean. However, most global models have thus far assumed a constant value for the %Feᵣ [e.g., Aumont et al., 2003; Moore et al., 2004; Parekh et al., 2005; Tagliabue et al., 2009]. A number of studies have considered the effect of aerosol source on aerosol Fe dissolution in the marine environment and concluded that anthropogenic or combustion aerosols (e.g., unrefined fuel combustion products and biomass burning) contain Fe with a significantly higher %Feᵣ compared with mineral aerosols.
Iron-binding ligands in seawater play a major role in Fe biogeochemistry. By keeping Fe in solution, ligands reduce the precipitation of ferric oxyhydroxides and thus the ultimate loss of dFe from surface waters via particle scavenging and export [Boyd and Ellwood, 2010]. Two classes of Fe-binding ligands have been characterized: stronger ligands ("L1"), the strongest of which occur mainly near the surface, and weaker ligands ("L2"), which are more abundant and occur throughout the water column [Rue and Bruland, 1995; Hunter and Boyd, 2007]. These L1 and L2 ligands have conditional stability constants (log K_{Fe,L_i}^{cond}, where i denotes the ligand class) of 11.1–13.9 and 9.7–11.95, respectively [Gledhill and Buck, 2012]. Numerous studies have shown that complexation by dissolved organic matter such as saccharides [Hassler et al., 2011], humic substances [Laglera and van den Berg, 2009], and other species that make up the L1 ligands [Rue and Bruland, 1995] allows Fe to exist at concentrations well in excess of the solubility of inorganic Fe(III).

Anthropogenic greenhouse gas emissions are thought to be responsible for observed increases in sea surface temperature (SST) [Intergovernmental Panel on Climate Change, 2013] and reductions in surface seawater pH [Orr et al., 2005]. As a consequence of increased SST, the upper ocean is expected to become more stratified and less oxygenated [Whitney et al., 2007; Stramma et al., 2008]. Furthermore, the likely increase in anthropogenic aerosol emissions may result in an increase in the delivery of organic matter to surface waters, which may potentially contain Fe-binding ligands [Wozniak et al., 2013]. These changing environmental parameters clearly have potential consequences for aerosol Fe dissolution, but the nature and magnitude of these effects are uncertain.

The experimental study described here aims to elucidate the main controls on aerosol Fe dissolution by manipulating key parameters that are likely to be affected by future environmental change, namely, SST, pH, dissolved O_2 concentration, and Fe-binding ligand concentration. Filtration using different pore size filters (0.4 μm and 0.02 μm) provided insight into the size distribution of aerosol-derived dFe in seawater leachate, as well as possible dissolution mechanisms under the range of different physicochemical conditions. In addition, experiments using bulk aerosol samples collected over a full annual cycle allowed us to assess the impact of differing aerosol sources on aerosol Fe dissolution, in relation to differing physicochemical conditions in surface seawater.

2. Methods

2.1. Seawater and Aerosol Sampling

All handling of samples and reagents was carried out under a Class 5 laminar flow hood (ISO 14644-1:1999, Bассaire or AirClean units). Ultrahigh purity (UHP, ≥18.2 MΩ cm) deionized water from Milli-Q (Millipore) or Nanopure (Barnstead) systems was used throughout this work. All plastic labware was cleaned following GEOTRACES cleaning protocols detailed by Cutter et al. [2010].

Seawater was collected at the Bermuda Atlantic Time-series Study (BATS) site in the Sargasso Sea (31°40′N, 64°10′W) on three cruises during the spring and summer periods (April 2010 to July 2011) on board the R/V Atlantic Explorer.
Polyvinylchloride 10 L Teflon-lined, external-closure Niskin-type bottles (Ocean Test Equipment) were used to collect seawater samples at the deep chlorophyll maximum (−60–120 m depth), where Fe concentrations are typically lowest [Sedwick et al., 2005]. Upon recovery, samples were immediately transferred from the Niskin bottles into acid-washed 50 L low-density polyethylene (LDPE) carboys (Nalgene) inside a polyethylene-walled “clean bubble” under positive pressure. The seawater was subsequently filtered through 0.45 μm polytetrafluoroethylene (PTFE) Osmonics membrane capsules (GE Water Systems) via gravity filtration into 25 L LDPE carboys (Nalgene) and stored in the dark under ambient clean room laboratory conditions for no longer than 3 months before being used in leaching experiments. L₁-type Fe-binding ligands in all bulk seawater samples were determined by competitive ligand exchange-adsorbptive cathodic stripping voltammetry prior to leaching experiments. The ligand concentrations were found to be subnanomolar (−0.8 nM; n = 5) in all samples with a log $K_{\text{Fe,Fe}}$ of −12 (data not shown).

Four aerosol samples were collected from the Tudor Hill atmospheric observatory on the southwest coast of Bermuda (32°15′9.5″N, 64°52′6.5″W) from 13 July to 20 August 2009 (AER 1, 38 days sampling), 27 September to 11 October 2010 (AER 2, 14 days sampling), 22 February to 10 May 2010 (AER 3, 54 days sampling), and 11 October to 13 December 2010 (AER 4, 63 days sampling). To help structure the discussion, sample numbers AER 1–AER 4 were ordered to reflect the influence of North American air masses during sampling (from smallest to largest). Samples were taken from a high-volume aerosol sampler, which drew air through 8 × 10² sheets of 2.2 μm pore size quartz microfiber Whatman QMA filters (GE Healthcare). The total volume of air sampled for AER 1, AER 2, AER 3, and AER 4 over these sampling periods was 8620 m³, 10,519 m³, 35,356 m³, and 24,243 m³, respectively. The aerosol filters were previously acid washed following a method described by Morton et al. [2013]. The aerosol sampler was located approximately 50 m above sea level on top of a 23 m high aluminum scaffolding tower. To avoid local aerosol sources and ensure that only marine air was sampled, pumps were switched off when the wind direction was not in the onshore sector (210°–315°), or if the wind speed was less than 1 m s⁻¹. A procedural field blank was taken by loading an aerosol filter into the aerosol sampler, leaving it in the sampler (with pumps off) for 5 min and then removing it. Aerosol samples were removed and placed in zip-lock bags and stored frozen at −20°C for 6–24 months before use.

2.2. Seawater Preconditioning

Separate 1 L aliquots of the 0.45 μm filtered BATS seawater were preconditioned before use in the leaching experiments. Filtered seawater aliquots used in the variable temperature experiments were equilibrated to 4°C and 25°C, using a fridge and temperature-controlled laboratory, respectively. Filtered seawater aliquots used in the variable seawater pH experiments were preconditioned by sparging with filtered air/CO₂ mixtures using mass flow controllers until a stable pH was reached (between 48 and 72 h) [de Putron et al., 2011]. The sparging gas mixtures simulated equilibrium with atmospheric CO₂ concentrations of 400 ppm CO₂ (present-day conditions) and 1250 ppm CO₂ (possible future conditions), resulting in seawater pH values of 8.0 (“ambient seawater”) and 7.6 (“acidified seawater”), respectively. “Total-scale” pH was calculated using the measured values of total dissolved inorganic carbon and alkalinity using “CO₂sys.” Similarly, anoxic conditions (<0.1% O₂) were created by purging dissolved O₂ from filtered seawater by sparging with filtered nitrogen (N₂) gas (for leaches 3 and 4 only). Filtered seawater aliquots used in organic ligand amendment experiments were preconditioned through the addition of a strong siderophore L₁-type ligand (either 10 nM of aerobactin (EMC Microcollections) or desferrioxamine B (Sigma–Aldrich)) or weaker L₂-type ligands (either 10 nM of protoporphyrin IX (Sigma–Aldrich) or 1 μM of glucuronic acid (Sigma–Aldrich)). These ligands were intended to simulate the range of Fe-binding ligands that exist in open ocean waters and were added in concentrations in excess (−1 order of magnitude) of typical open ocean surface water concentrations in the western North Atlantic [Cullen et al., 2006; Buck et al., 2014] in order to observe a clear response in aerosol Fe complexation.

2.3. Aerosol Leaching Experiments

Aerosol leaching experiments were designed to replicate the process of dry deposition in the open ocean as closely as possible within the laboratory. Leaches were performed using an acid-washed filtration tower (Savillex) comprising a 47 mm diameter perfluoroalkoxy filter assembly clamp, 250 mL evacuated Teflon collection vessel, and 0.25” diameter PTFE tubing. The PTFE tubing connected the collection vessel to a vacuum pump (GAST) via a 0.2 μm Acrovent air filter (Pall Corporation) and water trap. Acid-washed 0.4 μm
pore size, 47 mm polycarbonate track-etched membrane filters (Nuclepore, GE Healthcare) were used to separate "dissolved Fe" in the aerosol leachate solutions. Triplicate subsamples from each aerosol filter sample were taken using a 20 mm diameter polished steel arch punch (Osborne) and allowed to thaw at room temperature before being used for each different treatment in the aerosol leaching experiments.

The leaching process (Figure 1) involved four sequential leaches to test different equilibration times (leach 1 = 0–5 min, leach 2 = 5–10 min, leach 3 = 10 min–48 h, and leach 4 = 48 h–30 days). These leaching times were chosen to represent the typical range of residence times for aerosol particles in the upper surface ocean. For leach 1, a 20 mm diameter aerosol filter subsample was placed on a polycarbonate filter mounted within the filtration tower (under vacuum). Then 250 mL of preconditioned filtered seawater was poured over the aerosol filter in a continuous leaching process, lasting 5 min, with the resulting leachate collected. This process was repeated for leach 2 using the same aerosol subsample used in leach 1. Leaches 3 and 4 were batch leaches where the same aerosol subsample and polycarbonate filters used in leaches 1 and 2 were placed in fluorinated polyethylene (FPE, Nalgene) bottles with 500 mL of preconditioned filtered seawater for 48 h and 30 days for leaches 3 and 4, respectively (Figure 1). Previous studies employing an aerosol batch leach methodology have observed only negligible adsorption of dFe to bottle walls when fluorinated polymer bottles were used [Séguret et al., 2011]. To further minimize the effect of wall adsorption of dFe, the FPE bottles were first preconditioned for 24–72 h with filtered BATS seawater before batch leaches took place. To minimize the influence of ultraviolet light on Fe dissolution, leaches 1 and 2 were carried out under artificial light only, whereas leaches 3 and 4 were stored in darkness. The seawater leachate solutions that passed through the 0.4 μm filter membrane in each sequential leach were subsequently decanted into acid-washed 125 mL LDPE bottles (Nalgene). The entire leaching process was conducted in triplicate for every experimental treatment.

To determine "colloidal Fe" (cFe) and "soluble Fe" (sFe), 125 mL of seawater leachate samples were filtered through 0.02 μm pore size, 25 mm diameter aluminum oxide Whatman Anotop syringe filters (GE Healthcare) and collected in acid-washed 60 mL LDPE bottles (Nalgene) (Figure 1). In this study, following the definitions of Wu et al. [2001], dFe is defined as the <0.4 μm fraction, and sFe is defined as the <0.02 μm fraction. Colloidal Fe is thus inferred from the difference between dFe and sFe, representing the 0.02–0.4 μm size fraction (i.e., cFe = dFe-sFe). The Anotop filters used for ultrafiltration of aerosol leachate were set up and conditioned following the in-line filtration method detailed by Ussher et al. [2010]. Following aerosol leaches, all seawater leachate samples (including blanks) were acidified to pH ~1.7 using HCl (Romil, UpA) and stored for >1 year before analysis. In addition to leachate samples, process blanks were prepared by passing ambient filtered seawater over a procedural field blank subsample (section 2.1) and a 47 mm polycarbonate filter. Following analysis, the Fe concentrations of the relevant process blanks were subtracted from Fe concentrations of all leachate samples. The dFe concentrations of the process blanks were typically <0.1 nM.

Figure 1. Summary of aerosol leaching method. Leaches 1 and 2 were continuous leaches carried out using a Savillex filtration tower, and leaches 3 and 4 were batch leaches carried out in 500 mL fluorinated polyethylene (FPE) bottles. All seawater leachate samples were filtered through 0.4 μm and 0.02 μm pore size filters to define the size distribution of dissolved iron species in solution.
2.4. Determination of Iron in Seawater Leachates Using Flow Injection With Chemiluminescence

The concentrations of dFe and sFe in seawater leachate solutions were determined using flow injection with chemiluminescence detection (FI-CL) inside a Class 100 clean room (ISO 9001:2008), based on the method described by Obata et al. [1993]. Briefly, seawater leachate samples were buffered in-line to pH 3.5 with 0.35 M ammonium acetate (Romil, SpA) then loaded on a chelating column containing Toyopearl AF-Chelate-650 M iminodiacetate resin (IDA, Tosoh Bioscience). The seawater matrix major cations were removed using a 0.012 M HCl (Romil, SpA) rinse and then Fe was eluted from the column using 0.23 M HCl (Romil, SpA). The acid/analyte eluent was then mixed with 0.25 mM luminol, 0.5 M ammonium hydroxide, and 0.3 M hydrogen peroxide to initiate the oxidation of luminol [Rose and Waite, 2001], which produced a chemiluminescence signal detected by a photomultiplier tube (Hamamatsu).

Iron concentrations were quantified using the method of standard additions to low-Fe seawater (<0.35 nM dFe), subsampled from the original filtered seawater used for leaches (four sets of concentration ranges were used: 0.6–12 nM, 0.6–5 nM, 0.6–2.4 nM, and 0.2–1.4 nM; n = 6). All standards and samples were analyzed in triplicate. The accuracy of the method was checked daily by analyzing SAFe and GEOTRACES reference seawater and comparing the determined concentrations with consensus values: SAFe S = 0.091 ± 0.008 nM (n = 29), SAFe D2 = 0.910 ± 0.022 nM (n = 29), and GEOTRACES GD = 0.98 ± 0.10 nM (n = 22), (K. Bruland, unpublished data, 2008, available from the Bruland Research Laboratory at http://es.ucsc.edu/~kbruland/GeotracesSaFe/kwbGeotracesSaFe.html). The concentrations of Fe in reference seawater determined using this FI-CL system were typically within the range of the consensus values (SAFe S = 0.10 nM (n = 3), SAFe D2 = 0.85–0.91 nM (n = 4), and GEOTRACES GD = 0.83–0.99 nM (n = 8)). Analytical precision was typically better than ±5% relative standard deviation (RSD) for all standards, reference seawater, and samples.

2.5. Total Trace Metal Determination by Inductively Coupled Plasma Mass Spectrometry

Triplicate subsamples of AER 1–AER 4 and blanks were completely digested using concentrated hydrofluoric acid (28.9 M HF, Seastar, Baseline), concentrated nitric acid (15.8 M HNO3, Seastar, Baseline), and heat [Morton et al., 2013] at the University of Delaware. As acid digestion is a destructive process, it was necessary to use different subsamples of each aerosol sample in the aerosol leaching experiments and use the mean total Fe amount in fractional solubility calculations. Total element determinations were subsequently performed on the digests at Old Dominion University using an Element 2 (Thermo Fisher) inductively coupled plasma–mass spectrometer (ICP-MS) in medium resolution mode. Samples were spiked with indium (115In) as an internal standard. Calibration standards were made up using a multielemental standard (QC Standard 4, PlasmaCal containing aluminum (Al), titanium (Ti), manganese (Mn), vanadium (V), chromium (Cr), Fe, cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), antimony (Sb), and lead (Pb)) in the same 2% (vol/vol) HNO3 matrix as the aerosol digest solutions.

2.6. Air Mass Back Trajectory Analysis

Air mass back trajectories were simulated using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model developed by the U.S. National Oceanic and Atmospheric Administration (available for download at http://ready.arl.noaa.gov/hyreg/HYSPLIT_pchysplit.php). Ten-day back trajectories at altitudes of 50 m, 500 m, and 2000 m were performed for each day within the period over which aerosol samples were collected. Daily back trajectories were used in the cluster analysis function of HYSPLIT to generate 10 mean back trajectories for each aerosol sampling period.

3. Results and Discussion

3.1. Aerosol Sample Characterization

The aerosol samples collected at Tudor Hill represent a seasonal-scale time series comprising a summer sample (AER 1), an autumn sample (AER 2), a spring sample (AER 3), and a winter sample (AER 4). Daily 500 m elevation 10 day air mass back trajectories for each day of the collection period of each aerosol sample are provided in Figure 2. Air mass back trajectories modeled at 50 m and 2000 m elevations (not shown) were similar to those modeled at 500 m. The back trajectories for AER 1 (Figure 2a), collected between July and August 2009 and AER 2 (Figure 2b), collected between September and October 2010, suggest that the air had predominately traveled from the east, entraining soil dust from North Africa, as is typical for aerosols in the Bermuda region during summer [Sedwick et al., 2007]. The back trajectories for AER 3 (Figure 2c), collected
from February to May 2010 and AER 4 (Figure 2d), collected between October and December 2010, suggest that the air had predominately traveled from the northwest, entraining aerosols from North America. These results are consistent with time series aerosol observations from Bermuda over a number of decades [Duce and Hoffman, 1976; Chen and Duce, 1983; Anderson et al., 1996; Sholkovitz et al., 2009].

To gain an appreciation of the relative contributions of anthropogenic versus crustal materials to the aerosols, total masses of Fe, V, Ni, Cu, Pb, and Sb in the aerosol samples (Table 1) were normalized to the mass of Al, and the resulting ratios were compared with those of average continental crust [Taylor and McLennan, 1995] to calculate enrichment factors (Table 2). Samples collected in the winter (i.e., AER 4) were more enriched (enrichment factors > 10) in V, Ni, Cu, Pb, and Sb relative to aerosols collected in the summer (i.e., AER 1 and AER 2). These results are consistent with the back trajectory models (Figure 2) and agree with the suggestion of Sedwick et al. [2007] that marine air over the Sargasso Sea contains a greater proportion of anthropogenic combustion products (relative to continental soil dust) in the winter. Summer Fe and Al atmospheric loadings were higher than those determined in the winter (Table 1), consistent with previous work that has shown high-Fe and -Al loadings in air masses dominated by lithogenic aerosols, relative to anthropogenic materials [Baker et al., 2006; Buck et al., 2010a; Séguret et al., 2011].

3.2. Effect of Seawater Temperature, pH, and Deoxygenation on Aerosol Iron Dissolution

The total dFe leached from aerosols into preconditioned seawater samples of different temperature, pH, and O₂ concentration was calculated from the process-blank-corrected dFe concentrations and volumes of seawater leachate (Figure 3). An alternative representation of these results, as fractional solubilities of aerosol Fe (total dFe released into solution divided by total aerosol Fe), is shown in Figure 4.

The mean total dFe leached from each aerosol sample (AER 1–AER 4) into 4°C and 25°C seawater is shown in Figure 3a. The mean total dFe is the sum of all dFe released into seawater during the four sequential leaches and ranged from 0.7 ± 0.2 nmol to 4 ± 2 nmol for AER 1–AER 4 under these different seawater conditions.
Table 1. Total Trace Metal Masses Contained in Aerosol Subsamples and Atmospheric Loading of Trace Metals in Sampled Air

<table>
<thead>
<tr>
<th>Sample Period</th>
<th>Sample Name</th>
<th>Concentration of Trace Metal in Sampled Air (pmol m(^{-3}))</th>
<th>Total Mass of Trace Metal in Aerosol Subsample (ng)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul 2009</td>
<td>AER 1</td>
<td>Al: 18.0 Fe: 14.8 V: 3.4 Ni: 3.4 Cu: 3.4 Pb: 3.4 Sb: 1.3</td>
<td>Al: 2.65 Fe: 4.3 V: 6.6 Ni: 5.9 Pb: 1.7 Sb: 1.4</td>
</tr>
<tr>
<td>Aug 2009</td>
<td>AER 1</td>
<td>Al: 2.4 Fe: 2.6 V: 2.4 Ni: 2.4 Cu: 2.4 Pb: 2.4 Sb: 1.4</td>
<td>Al: 0.04 Fe: 0.04 V: 0.04 Ni: 0.04 Pb: 0.04 Sb: 0.04</td>
</tr>
<tr>
<td>Sep 2009</td>
<td>AER 2</td>
<td>Al: 2.8 Fe: 2.8 V: 2.8 Ni: 2.8 Cu: 2.8 Pb: 2.8 Sb: 1.8</td>
<td>Al: 0.05 Fe: 0.05 V: 0.05 Ni: 0.05 Pb: 0.05 Sb: 0.05</td>
</tr>
<tr>
<td>Oct 2009</td>
<td>AER 2</td>
<td>Al: 2.8 Fe: 2.8 V: 2.8 Ni: 2.8 Cu: 2.8 Pb: 2.8 Sb: 1.8</td>
<td>Al: 0.05 Fe: 0.05 V: 0.05 Ni: 0.05 Pb: 0.05 Sb: 0.05</td>
</tr>
<tr>
<td>Nov 2009</td>
<td>AER 2</td>
<td>Al: 2.8 Fe: 2.8 V: 2.8 Ni: 2.8 Cu: 2.8 Pb: 2.8 Sb: 1.8</td>
<td>Al: 0.05 Fe: 0.05 V: 0.05 Ni: 0.05 Pb: 0.05 Sb: 0.05</td>
</tr>
<tr>
<td>Dec 2009</td>
<td>AER 2</td>
<td>Al: 2.8 Fe: 2.8 V: 2.8 Ni: 2.8 Cu: 2.8 Pb: 2.8 Sb: 1.8</td>
<td>Al: 0.05 Fe: 0.05 V: 0.05 Ni: 0.05 Pb: 0.05 Sb: 0.05</td>
</tr>
</tbody>
</table>

aTotal mean masses (ng) of aluminum (Al), iron (Fe), vanadium (V), nickel (Ni), copper (Cu), lead (Pb), and antimony (Sb) in triplicate subsamples of each aerosol sample. Standard deviations from mean masses (±1 \(\sigma\)) represent masses of metals determined for three subsamples of the same aerosol sample.
bMean concentrations (pmol m\(^{-3}\)) of Al, Fe, V, Ni, Cu, Pb, and Sb in sampled air calculated using the total mean masses of trace metals in each aerosol subsample and the total volume of air passed through each sample filter over the sampling period. Standard deviations from mean concentrations (±1 \(\sigma\)) represent the uncertainty of trace metal mean mass measurements only.
anoxic seawater was not statistically different (two-tailed t test, \(p > 0.05 \)) from the total Fe leached into ambient seawater for all aerosol samples. The mean total Fe in the seawater leached from each aerosol sample (AER 1 – AER 4) into ambient, acidified, and anoxic seawater is shown in Table 3. The mean total Fe from the four sequential leaches into these different seawater conditions ranged from 0.02 nmol to 0.16 nmol for AER 1 – AER 4. In all cases, the majority (92 – 98%) of Fe in the seawater leachate solutions resided in the Fe size fraction (Table 3). There were some differences observed between samples: for example, the mean total Fe leached into ambient seawater was greater than that leached into acidified seawater for two of the four aerosol samples (AER 2 and AER 3), whereas the opposite was observed for AER 1 and AER 4. However, similar to the Fe results, the differences in the mean total Fe in the various seawater leachate samples were not statistically different (two-tailed t test, \(p > 0.05 \)) when the differences in Fe for replicate leaching experiments are taken into account.

Thus, our experimental results suggest that seawater temperature,
pH (as controlled by pCO_2), and O_2 concentration did not exert a major control on the dissolution of aerosol Fe, nor on the size distribution of aerosol-derived dFe in seawater, within the experimental uncertainties and ranges of the parameters examined. These observations are in accord with those of Kuma et al. [1996], who reported no difference in the solubility of inorganic Fe(III) in seawater at 10°C versus 20°C. In contrast, however, Liu and Millero [2002] reported higher solubility of Fe(III) seawater at 5°C versus 25°C ($0.5 \pm 0.07 \text{ mM}$ for 5°C seawater and $0.35 \pm 0.06 \text{ mM}$ for 25°C seawater). Other studies have demonstrated an increase in the solubility of inorganic Fe with decreasing pH [Byrne and Kester, 1976; Kuma et al., 1996; Liu and Millero, 2002]. However, consistent with this study, Liu and Millero [2002] report that Fe solubility does not change in the pH range of 7.5–9, due to the dominance of the neutrally charged species Fe(OH)$_3^-$ [Liu and Millero, 1999]. It should be noted that in the cases of Liu and Millero [2002] and Byrne and Kester [1976], equilibrium conditions were represented, whereas our leach experiments are not likely to represent equilibrium conditions. Data from our study also agree with empirical data that suggest little difference in the dissolution of aerosol Fe in seawater (pH ~8) versus UHP (≥18.2 MΩ cm, pH 5.6) deionized water [Aguilar-Islas et al., 2010; Buck et al., 2013].

Table 3. The Mean Total (nmol) of Dissolved Iron (dFe), Colloidal Iron (cFe), and Soluble Iron (sFe) Leached From Aerosol Samples AER 1, AER 2, AER 3, and AER 4 During Three Replicate Leaches With Seawater

<table>
<thead>
<tr>
<th>Aerosol Sample</th>
<th>Seawater Condition</th>
<th>dFe (nmol)</th>
<th>cFe (nmol)</th>
<th>sFe (nmol)</th>
<th>Proportion of dFe (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AER 1</td>
<td>25°C</td>
<td>0.9 ± 0.4</td>
<td>0.68</td>
<td>0.20</td>
<td>77%</td>
</tr>
<tr>
<td>AER 1</td>
<td>4°C</td>
<td>0.7 ± 0.2</td>
<td>0.64</td>
<td>0.037</td>
<td>94%</td>
</tr>
<tr>
<td>AER 1</td>
<td>Ambient (25°C, pH 8.0, oxygenated)</td>
<td>0.8 ± 0.0</td>
<td>0.80</td>
<td>0.016</td>
<td>98%</td>
</tr>
<tr>
<td>AER 1</td>
<td>Acidified (pH 7.6)</td>
<td>0.6 ± 0.2</td>
<td>0.51</td>
<td>0.043</td>
<td>92%</td>
</tr>
<tr>
<td>AER 2</td>
<td>25°C</td>
<td>2.4 ± 0.4</td>
<td>2.3</td>
<td>0.15</td>
<td>94%</td>
</tr>
<tr>
<td>AER 2</td>
<td>4°C</td>
<td>2.8 ± 0.4</td>
<td>2.3</td>
<td>0.41</td>
<td>85%</td>
</tr>
<tr>
<td>AER 2</td>
<td>Ambient (25°C, pH 8.0, oxygenated)</td>
<td>2.6 ± 0.3</td>
<td>2.5</td>
<td>0.09</td>
<td>97%</td>
</tr>
<tr>
<td>AER 2</td>
<td>Acidified (pH 7.6)</td>
<td>1.7 ± 0.3</td>
<td>1.6</td>
<td>0.052</td>
<td>97%</td>
</tr>
<tr>
<td>AER 2</td>
<td>Anoxic</td>
<td>2.0 ± 0.3</td>
<td>1.9</td>
<td>0.050</td>
<td>97%</td>
</tr>
<tr>
<td>AER 3</td>
<td>25°C</td>
<td>4.3 ± 1.6</td>
<td>4.2</td>
<td>0.12</td>
<td>97%</td>
</tr>
<tr>
<td>AER 3</td>
<td>4°C</td>
<td>3.3 ± 1.1</td>
<td>3.1</td>
<td>0.22</td>
<td>93%</td>
</tr>
<tr>
<td>AER 3</td>
<td>Ambient (25°C, pH 8.0, oxygenated)</td>
<td>4.3 ± 1.3</td>
<td>4.2</td>
<td>0.16</td>
<td>96%</td>
</tr>
<tr>
<td>AER 3</td>
<td>Acidified (pH 7.6)</td>
<td>4.7 ± 1.9</td>
<td>4.6</td>
<td>0.11</td>
<td>98%</td>
</tr>
<tr>
<td>AER 4</td>
<td>25°C</td>
<td>2.5 ± 0.5</td>
<td>2.2</td>
<td>0.23</td>
<td>91%</td>
</tr>
<tr>
<td>AER 4</td>
<td>4°C</td>
<td>2.2 ± 1.0</td>
<td>2.0</td>
<td>0.15</td>
<td>93%</td>
</tr>
<tr>
<td>AER 4</td>
<td>Ambient (25°C, pH 8.0, oxygenated)</td>
<td>2.4 ± 0.6</td>
<td>2.3</td>
<td>0.055</td>
<td>98%</td>
</tr>
<tr>
<td>AER 4</td>
<td>Acidified (pH 7.6)</td>
<td>2.2 ± 0.7</td>
<td>2.1</td>
<td>0.055</td>
<td>97%</td>
</tr>
<tr>
<td>AER 4</td>
<td>Anoxic</td>
<td>2.8 ± 0.7</td>
<td>2.8</td>
<td>0.043</td>
<td>98%</td>
</tr>
</tbody>
</table>

The 25°C seawater, 4°C seawater, ambient seawater from the pH and deoxygenation experiment (25°C, pH 8.0, oxygenated), acidified seawater (25°C, pH 7.6, sparged with air enriched in carbon dioxide), and anoxic seawater (25°C, sparged with nitrogen gas for leaches 3 and 4). Standard deviations (±1σ) from the mean total Fe leached from replicate subsamples of the same aerosol sample are shown for dFe.
Given the year 2100 projections for average SST to increase by 1°C [Meehl et al., 2007], seawater pH to decrease by 0.25 [Caldeira and Wickett, 2003], and oceanic oxygen minimum zones to expand [Shaffer et al., 2009], our data suggest that such changes will not significantly impact on aerosol Fe dissolution in surface ocean waters. However, it should be stressed that the combined effect of these changes, or the impact of such changes on other factors that impact aerosol Fe dissolution, cannot be ruled out. Our findings have important implications for modeling the impact of future changes in aerosol input to the global cycling of Fe and carbon, as well as phytoplankton growth and community structure. Specifically, our experimental results suggest that to a first approximation, models do not need to consider that aerosol Fe dissolution will vary as a function of projected variations in seawater temperature, pH, or oxygen saturation. While seawater temperature, pH, and O2 concentration had no significant effect on aerosol Fe dissolution, we observed pronounced differences in aerosol Fe solubilities for aerosols from different source regions with different bulk compositions.

3.3. Effect of Aerosol Source and Composition on Aerosol Iron Dissolution

Seawater leaching of aerosol samples of different source and composition resulted in different fractional solubilities of aerosol Fe under all conditions (Figure 4). Indeed, there is nearly an order of magnitude difference in the %Fe5 for the more “anthropogenic”-type aerosol (AER 4) relative to the “mineral dust”-type aerosol (AER 1). The operationally defined %Fe5 for aerosol AER 1 was consistently lower (0.3 ± 0.1% to 0.5 ± 0.2%) than that for aerosol AER 4 (2.5 ± 0.8% to 3.2 ± 0.8%) under all physicochemical conditions of the seawater leaching experiments. The dependence of aerosol Fe solubility on aerosol type and source has been noted in previous studies [Sedwick et al., 2007; Sholkovitz et al., 2009; Buck et al., 2010b; Séguert et al., 2011; Shelley et al., 2012; Baker et al., 2013; Woźniak et al., 2013]. It has been suggested that the elevated %Fe5 in anthropogenically influenced aerosols reflects acidic processing at the particle surface [Meskhidze et al., 2005; Hsu et al., 2010], the presence of labile Fe sulfates and other soluble Fe phases [Oakes et al., 2012], and the tendency for anthropogenic aerosols to be smaller than mineral dust particles [Chen and Siebert, 2004; Jang et al., 2007]. Conversely, mineral aerosol particles tend to be larger, with much of the Fe contained in refractory minerals [Desboeufs et al., 2005].

Sholkovitz et al. [2009] show a linear relationship between the %Fe5 and the V/Al mass ratios of bulk aerosol samples collected over the Sargasso Sea. That linear relationship and the V/Al mass ratios of bulk aerosol samples collected in this study were used to predict fractional solubilities in ambient seawater; these predictions were then compared with empirically determined fractional solubilities. While absolute values of the predicted and determined fractional solubilities differed (predicted values of 1.4%, 2.0%, 2.7%, and 3.8% for AER 1, AER 2, AER 3, and AER 4, respectively, versus observed values of 0.5%, 1.2%, 1.3%, and 2.8% for AER 1, AER 2, AER 3, and AER 4, respectively), the predicted trend of increasing solubility with increasing V/Al mass ratios matched the empirical values. Thus, our results indicate greater %Fe5 in aerosols containing a larger proportion of anthropogenic material.

While this study is unable to provide insight into the mechanism of enhanced Fe solubility in non-soil-dust aerosols, the results add to the existing evidence that Fe in anthropogenic aerosols is more soluble than Fe in soil-derived mineral dust and that this variability dominates over potential changes in the fundamental parameters of temperature, pH, and O2 concentration of the seawater in which aerosols are deposited. These results suggest that the potential for an increase in anthropogenic aerosol emissions accompanying the rising global population and the industrialization of developing nations [International Energy Agency, 2009] could conceivably increase the atmospheric flux of dFe to the ocean and may exert significant regional-scale impacts [Sholkovitz et al., 2009]. However, when considering a total flux including refractory material, soil dust is likely to continue to dominate the total global aerosol Fe deposition [Prospero et al., 2002], and therefore, the global importance of anthropogenic aerosol Fe input is likely to remain marginal. These results reinforce the idea that modeling efforts must consider the source of aerosols deposited in different ocean regions, as well as the potential for future changes in the composition of aerosols entering the ocean.

3.4. Effect of Organic Ligands on Aerosol Iron Dissolution

Figure 5a shows the mean total dFe leached from aerosol sample AER 1 into ambient seawater and into seawater samples amended with various organic ligands. Despite the added ligands having very different conditional stability constants with respect to Fe complexation, the mean total dFe leached from aerosols...
following all leaches (including a control using seawater with no added ligands) fell in the narrow range of 0.8 ± 0.1 nmol to 1.2 ± 0.5 nmol. Interestingly, there was no statistical difference between the mean total dFe leached into each ligand-amended seawater sample and that leached into unamended ambient seawater (two-tailed t test, \(p > 0.05 \)), which contrasts with the results of previous work by Aguilar-Islas et al. [2010]. However, this earlier study did not include replicate leaches using subsamples of a single-aerosol sample. Our study has shown that the RSD associated with replicate leaches can exceed 50%, and while the mean total amounts of dFe leached into ligand-amended seawater appeared to differ from that leached into ambient seawater, these differences were not statistically significant. The majority of the variation in dFe leached from subsamples of a single-aerosol filter reflects either the inherent variability of the leaching process (i.e., the leaching mechanism or variability in the Fe species or particle character) or the heterogeneity of Fe species with different fractional solubilities across the aerosol filter. Bulk analysis of an extended suite of aerosol digest solutions (data not shown) suggests that heterogeneity in the total Fe contained on the aerosol filter is unlikely to be responsible for the observed variability in dFe between replicate leaches (RSD on the mean total Fe in subsamples of a single aerosol sample is < 3%).

In stark contrast, there were pronounced differences in the mean total sFe in leachate solutions after leaching with unamended ambient seawater versus seawater amended with the L1-type ligands aerobactin and desferrioxamine B (Figure 5b). The mean total sFe leached into ambient seawater leachate was 0.02 nmol, whereas leachate from seawater amended with aerobactin and desferrioxamine B contained 1.3 nmol and 1.1 nmol sFe, respectively. This large impact observed with L1-type ligand-amended seawater was not seen with the weaker organic ligands, glucuronic acid and protoporphyrin IX, for which leachate solutions contained 0.10 nmol and 0.16 nmol sFe, respectively.

In comparing the dFe and sFe in the seawater leachate solutions, it is apparent that the majority (~100%) of the dFe in ambient seawater leachate existed as cFe. The same was true for all of the seawater leachate solutions from the temperature, pH, and dissolved O2 experiments. This observation is consistent with the results of previous laboratory studies and field observations [Wu et al., 2001; Bergquist et al., 2007; Aguilar-Islas et al., 2010; Ussher et al., 2013; Fitzsimmons and Boyle, 2014]. Conversely, for aerosols leached with seawater
amended with the L1-type ligands aerobactin and desferrioxamine B, the majority of dFe in the leachate (77–98%) resided in the sFe fraction. However, for leaches with seawater amended with the weaker ligands, glucuronic acid and protoporphyrin IX, there was only a small increase in the proportion of sFe in the leachate compared with the control experiment using ambient conditions (sFe accounted for 11–21% of dFe). This observation suggests that the stronger L1-type ligands may play an important role in the dissolution of aerosol Fe in the surface ocean.

Based on the results of this study, we hypothesize a two-stage mechanism for the dissolution of aerosol Fe in seawater (Figure 6). First, upon deposition of aerosols at the ocean surface, labile inorganic Fe [Fe(II) and Fe(III)] is released into seawater, whereupon it rapidly forms colloidal-sized ferric oxyhydroxides or is adsorbed or complexed by colloidal-sized organic matter with metal-binding functional groups (e.g., saccharides [Hassler et al., 2011], amino acids [Benner, 2011], and humic substances [Laglera and van den Berg, 2009]). After this first stage, the dissolved aerosol Fe exists predominantly in the cFe size fraction, as observed in the majority of our experimental leachate solutions. During the second stage of our hypothesized mechanism, strong L1-type ligands, such as siderophores, if present uncomplexed in sufficient concentration, form strong Fe-ligand complexes, whereby there is a transfer of dissolved aerosol Fe from the colloidal to the soluble size fraction, as low molecular weight (~300–1000 amu) Fe-ligand complexes [Macrellis et al., 2001]. The fact that not all Fe is “solubilized” by L1-type ligands, despite seawater being amended with large excess concentrations (10 nM) in our experiments, may reflect the physical or chemical association of some L1-type ligands with colloidal material present in the seawater.

An alternative hypothesis is that upon deposition at the surface ocean, aerosols may release colloidal-sized organic matter or inorganic phases with which Fe is already associated [Raiswell and Canfield, 2012; Paris and...
Desboeufs, 2013]. In seawater, L1-type ligands can then draw the aeolian cFe into the soluble fraction, as described above. However, we suggest that it is more likely that dFe released from aerosols associates with colloids already present in seawater. This conclusion is based on results for the leaching of aerosols using seawater preconditioned by filtration (\(<0.4\mu m\)) and ultrafiltration (\(<0.02\mu m\)), which show lower dFe concentrations in leachate derived using ultrafiltered seawater [Ussher, 2005]. In addition, Dammshäuser and Croot [2012] showed that aerosol AI and titanium (Ti) colloidal associations are very low following dissolution into seawater compared to soluble forms, potentially indicating low input of colloidal matter from aerosols.

More work is required to establish whether colloidal Fe is delivered by aerosols or forms in seawater following deposition and determine if aerosol characteristics such as particle size of deposited aerosols and aerosol composition (i.e., mineral dust versus combustion products) play a role in this dissolution mechanism. Certainly, a higher proportion of colloidal Fe has been observed in regions of fine-mode aerosol deposition in comparison to regions of coarse-mode aerosol deposition, and this fine aerosol size fraction results in higher fractional solubilities of Fe [Buck et al., 2010b; Ussher et al., 2013].

In summary, from our experimental results, it seems clear that stronger organic Fe-binding ligands play an important role in the dissolution of aerosol Fe. This observation has important implications for our understanding of the biogeochemical role of organic ligands with regard to the cycling of Fe. In the absence of such organic ligands, aerosol-derived dFe will remain largely in the colloidal size fraction in seawater; in which case, it is expected to be more rapidly lost from surface ocean waters over a period of weeks to months [Moran and Buesseler, 1992; Boyd et al., 2010]. In the presence of sufficient concentrations of strong ligands, however, aerosol-derived dFe may be transferred from the colloidal to the soluble size fraction, where it may be expected to have a longer residence time in the euphotic zone [Boyd and Ellwood, 2010] and thus have greater biological availability to phytoplankton. It is important to note that the role that biological organisms play in aerosol Fe dissolution has not been considered in this study and should be included when attempting to understand the complete aerosol Fe dissolution mechanism.

4. Conclusions

The results of this experimental study suggest that plausible future variations in the temperature, pH, and O2 concentration of seawater will have a minor impact on the dissolution of aerosol Fe. However, in accord with other studies, our data indicate that aerosol composition has the most significant effect on the dissolution of aerosol Fe, with North Atlantic aerosol samples with the greatest anthropogenic components having the highest fractional solubility. Hence, we surmise that future increases in the magnitude of global aerosol fluxes and the proportion of combustion aerosols, relative to mineral dust, are likely to be the most important drivers of changes in the atmospheric flux of dFe to the surface ocean. Therefore, it is reasonable for modelers not to prioritize the inclusion of seawater temperature, pH, and O2 concentration effects on aerosol Fe dissolution, but instead, focus attention on the regional differences in the original source of deposited aerosols.

Furthermore, our results highlight the importance of strong Fe-binding organic ligands in regulating the size distribution of aerosol-derived dFe in surface ocean waters, specifically in increasing the residence time and biological availability of aerosol-derived Fe in the surface ocean. A conceptual model of aerosol Fe dissolution is proposed in which strong Fe-binding organic ligands play a key role. The proposed two-stage mechanism highlights the significance of (i) the colloidal phase and (ii) the strong L1-type ligands in the soluble phase in retaining biologically available aerosol Fe in surface ocean waters following aerosol deposition.

References

