Date of Award

Spring 2019

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Electrical/Computer Engineering

Committee Director

Linda Vahala

Committee Member

Holly Handley

Committee Member

Weize Yu

Abstract

Graphical passwords are always considered as an alternative of alphanumeric passwords for their better memorability and usability [1]. Alphanumeric passwords provide an adequate amount of satisfaction, but they do not offer better memorability compared to graphical passwords [1].

On the other hand, graphical passwords are considered less secured and provide better memorability [1]. Therefore many researchers have researched on graphical passwords to overcome the vulnerability. One of the most significant weaknesses of the graphical passwords is "Shoulder Surfing Attack," which means, sneaking into a victim's computer to learn the whole password or part of password or some confidential information. Such kind of attacks is called as Shoulder Surfing Attack.

Many researchers have presented various ideas to curb the shoulder surfing attack. However, graphical passwords are still vulnerable to this attack. Therefore, in the present thesis, the solution for shoulder surfing attack is analyzed and a new algorithm is developed to provide better algorithm with memorability as well as very strong password using the encryption. For alphanumeric passwords, dictionary attack, and brute force attack are critical potential threats to be taken care off. Dictionary attacks mean, attacking every word from the dictionary to crack the password, whereas, brute force attack means, applying all different kind of combinations to crack the password. Thus, both protection methods have their pros and cons and, therefore in this thesis, the possible solution has been researched to provide more secure technique. Encryption is another essential technique in the field of cybersecurity. The history of encryption dates back to World War 2, where German forces used its encryption technique for the first time, and this encryption has been developed a lot with the consistent contribution of many researchers.

Starting from the German encryption technique, the present encryption field has evolved a lot and compared to its primitive form; the current encryption techniques are more secured. In the encryption, various cryptosystems have been developed, and due to consistently developed computational power, attackers have compromised various cryptosystem. One of the essential cryptosystems is the MD family cryptosystem. In the MD family, a few members have been compromised whereas members such as MD5, had inbuilt algorithm flow and therefore they became vulnerable for different reasons.

In this thesis, the research has been done with Whirlpool encryption, which is never compromised as of now. However, before using the Whirlpool encryption, the string has been processed with multiple steps, such as, perception, shifting of characters, splitting the string into chunks, and then each piece has been encrypted to populate 128 characters long password for each fragment and thus, the algorithm to generate 1280 characters long passwords is proposed which are immune to linear attacks, dictionary attacks, brute force attacks, and shoulder surfing attack.

After the research, the computational time is also calculated for the modern computer (8 core, 2.8 GHz) as well as the present Supercomputers which are 100000 times faster than a modern computer. After all the research, the conclusion and future work are also mentioned for future research.

DOI

10.25777/evz8-6s05

ISBN

9781085640770

ORCID

0000-0002-5119-4373

Share

COinS