Date of Award

Summer 2015

Document Type


Degree Name

Doctor of Philosophy (PhD)


Electrical/Computer Engineering

Committee Director

Dimitrie C. Popescu

Committee Member

Dean Krusienski

Committee Member

Roland Mielke

Committee Member

W. Steven Gray


Radar systems have been used for many years for estimating, detecting, classifying, and imaging objects of interest (targets). Stealthier targets and more cluttered environments have created a need for more sophisticated radar systems to gain more precise information about the radar environment. Because modern radar systems are largely defined in software, adaptive radar systems have emerged that tailor system parameters such as the transmitted waveform and receiver filter to the target and environment in order to address this need.

The basic structure of a radar system exhibits many similarities to the structure of a communication system. Recognizing the parallel composition of radar systems and information transmission systems, initial works have begun to explore the application of information theory to radar system design, but a great deal of work still remains to make a full and clear connection between the problems addressed by radar systems and communication systems. Forming a comprehensive definition of this connection between radar systems and information transmission systems and associated problem descriptions could facilitate the cross-discipline transfer of ideas and accelerate the development and improvement of new system design solutions in both fields. In particular, adaptive radar system design is a relatively new field which stands to benefit from the maturity of information theory developed for information transmission if a parallel can be drawn to clearly relate similar radar and communication problems.

No known previous work has yet drawn a clear parallel between the general multiple-input multiple-output (MIMO) radar system model considering both the detection and estimation of multiple extended targets and a similar multiuser vector channel information transmission system model. The goal of this dissertation is to develop a novel vector channel framework to describe a MIMO radar system and to study information theoretic adaptive radar waveform design for detection and estimation of multiple radar targets within this framework.

Specifically, this dissertation first provides a new compact vector channel model for representing a MIMO radar system which illustrates the parallel composition of radar systems and information transmission systems. Second, using the proposed framework this dissertation contributes a compressed sensing based information theoretic approach to waveform design for the detection of multiple extended targets in noiseless and noisy scenarios. Third, this dissertation defines the multiple extended target estimation problem within the framework and proposes a greedy signal to interference-plus-noise ratio (SINR) maximizing procedure based on a similar approach developed for a collaborative multibase wireless communication system to optimally design wave forms in this scenario.