Date of Award

Spring 2017

Document Type


Degree Name

Doctor of Philosophy (PhD)


Mechanical & Aerospace Engineering

Committee Director

Han Bao

Committee Member

Miltiadis Kotinis

Committee Member

Resit Unal


The research presented in this dissertation addresses the application of evolution algorithms, i.e. Genetic Algorithm (GA) and Differential Evolution algorithm (DE) to scheduling problems in the presence of restricted conditions and resource limitations. This research is motivated by the scheduling of engineering design tasks in shop scheduling problems and ship maintenance scheduling problems to minimize total completion time. The thesis consists of two major parts; the first corresponds to the first appended paper and deals with the computational complexity of mixed shop scheduling problems. A modified Genetic algorithm is proposed to solve the problem. Computational experiments, conducted to evaluate its performance against known optimal solutions for different sized problems, show its superiority in computation time and the high applicability in practical mixed shop scheduling problems. The second part considers the major theme in the second appended paper and is related to the ship maintenance scheduling problem and the extended research on the multi-mode resource-constrained ship scheduling problem. A heuristic Differential Evolution is developed and applied to solve these problems. A mathematical optimization model is also formulated for the multi-mode resource-constrained ship scheduling problem. Through the computed results, DE proves its effectiveness and efficiency in addressing both single and multi-objective ship maintenance scheduling problems