Date of Award

Summer 2018

Document Type


Degree Name

Doctor of Philosophy (PhD)


Mechanical & Aerospace Engineering

Committee Director

Jen-Kuang Juang

Committee Member

Gene Hou

Committee Member

Han Bao

Committee Member

Duc Nguyen


Autonomous surface vehicles (ASVs) are being used for diverse applications of civilian and military importance such as: military reconnaissance, sea patrol, bathymetry, environmental monitoring, and oceanographic research. Currently, these unmanned tasks can accurately be accomplished by ASVs due to recent advancements in computing, sensing, and actuating systems. For this reason, researchers around the world have been taking interest in ASVs for the last decade. Due to the ever-changing surface of water and stochastic disturbances such as wind and tidal currents that greatly affect the path-following ability of ASVs, identification of an accurate model of inherently nonlinear and stochastic ASV system and then designing a viable control using that model for its planar motion is a challenging task. For planar motion control of ASV, the work done by researchers is mainly based on the theoretical modeling in which the nonlinear hydrodynamic terms are determined, while some work suggested the nonlinear control techniques and adhered to simulation results. Also, the majority of work is related to the mono- or twin-hull ASVs with a single rudder. The ODU-ASV used in present research is a twin-hull design having two DC trolling motors for path-following motion.

A novel approach of time-domain open-loop observer Kalman filter identifications (OKID) and state-feedback optimal linear tracking control of ODU-ASV is presented, in which a linear state-space model of ODU-ASV is obtained from the measured input and output data. The accuracy of the identified model for ODU-ASV is confirmed by validation results of model output data reconstruction and benchmark residual analysis. Then, the OKID-identified model of the ODU-ASV is utilized to design the proposed controller for its planar motion such that a predefined cost function is minimized using state and control weighting matrices, which are determined by a multi-objective optimization genetic algorithm technique. The validation results of proposed controller using step inputs as well as sinusoidal and arc-like trajectories are presented to confirm the controller performance. Moreover, real-time water-trials were performed and their results confirm the validity of proposed controller in path-following motion of ODU-ASV.