Date of Award

Spring 2000

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Mechanical & Aerospace Engineering

Program/Concentration

Mechanical Engineering

Committee Director

Surendra N. Tiwari

Committee Director

R. Byron Pipes

Committee Member

Stephen G. Cupschalk

Committee Member

Norman J. Johnston

Call Number for Print

Special Collections; LD4331.E56 H877

Abstract

Experiments were carried out at the NASA Langley Research Center automated fiber placement facility to determine an optimal process for the fabrication of composite materials having polymer film interleafs. A series of experiments was conducted to determine an optimal process for the composite prior to investigation of a process to fabricate laminates with polymer films. The results of the composite tests indicated that a well-consolidated, void-free laminate could be attained. Preliminary interleaf processing trials were then conducted to establish some broad guidelines for film processing. The primary finding of these initial studies was that a two-stage process was necessary in order to process these materials adequately. A screening experiment was then performed to determine the relative influence of the process variables on the quality of the film interface as determined by the wedge peel test method. Parameters that were found to be of minor influence on specimen quality were subsequently held at fixed values enabling a more rapid determination of an optimal process. Optimization studies were then performed by varying the remaining parameters at three film melt processing rates. The resulting peel data were fitted with quadratic response surfaces. Additional specimens were fabricated at levels of high peel strength as predicted by the regression models in an attempt to gage the accuracy of the predicted response and to assess the repeatability of the process. The overall results indicate that quality laminates having film interleaves can be successfully and repeatably fabricated by automated fiber placement.

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

DOI

10.25777/9jft-q814

Share

COinS