Date of Award

Spring 2009

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Aerospace Engineering

Committee Director

Brett A. Newman

Committee Member

Osama A. Kandil

Committee Member

Duc T. Nguyen

Committee Member

Keejoo Lee

Abstract

In this research, life extending control logic is proposed to reduce the cost of treating the aging problem of military aircraft structures and to avoid catastrophic failures and fatal accidents due to undetected cracks in the airframe components. The life extending control logic is based on load tailoring to facilitate a desired stress sequence that prolongs the structural life of the cracked airframe components by exploiting certain nonlinear crack retardation phenomena. The load is tailored to include infrequent injections of a single-cycle overload or a single-cycle overload and underload. These irregular loadings have an anti-intuitive but beneficial effect, which has been experimentally validated, on the extension of the operational structural life of the aircraft. A rigid six-degree-of freedom dynamic model of a highly maneuverable air vehicle coupled with an elastic dynamic wing model is used to generate the stress history at the lower skin of the wing. A three-dimensional equivalent plate finite element model is used to calculate the stress in the cracked skin. The plate is chosen to be of uniform chord-wise and span-wise thickness where the mechanical properties are assigned using an ad-hoc approach to mimic the full scale wing model. An in-extensional 3-node triangular element is used as the gridding finite element while the aerodynamic load is calculated using the vortex-lattice method where each lattice is laid upon two triangular finite elements with common hypotenuse. The aerodynamic loads, along with the base-excitation which is due to the motion of the rigid aircraft model, are the driving forces acting on the wing finite element model. An aerodynamic control surface is modulated based on the proposed life extending control logic within an existing flight control system without requiring major modification. One of the main goals of life extending control logic is to enhance the aircraft's service life, without incurring significant loss of vehicle dynamic performance. The value of the control-surface deflection angle is modulated so that the created overstress is sufficiently below the yield stress of the panel material. The results show that extension in crack length was reduced by 40% to 75% with an absence of damage mitigation logic. Moreover, the desired structural integrity is satisfied without affecting the air vehicle dynamic performance.

DOI

10.25777/66j3-x541

ISBN

9781109284447

Share

COinS