Date of Award

Winter 2006

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Aerospace Engineering

Committee Director

Thomas E. Alberts

Committee Member

Brett Newman

Committee Member

Colin P. Britcher

Committee Member

Braden J. McGrath

Abstract

During conditions of visual occlusion, pilots are forced to rapidly adapt their scan to accommodate the new observable states via instruments rather than the visual environment. During this transition, the provision of aircraft state information via other than visual modalities improves pilot performance presumably through the increase in situational awareness provided immediately following the visual occlusion event.

The Tactile Situational Awareness System (TSAS) was developed to provide continuous position information to the pilot via tactile rather than visual means. However, as a low-resolution display, significant preprocessing of information is required to maximize utility of this new technology.

Development of a nonlinear time varying estimator based multivariable model enables more accurate reproduction of pilot performance than previous models and provides explanations of many observed phenomena. The use of LQR feedback and an optimal estimator is heuristically consistent with reported strategies and was able to match pilot incorporation of multi-modal displays. Development of a nonlinear stochastic map of pilot "move-and-hold" control performance was able to accurately match increased pilot control noise at higher frequencies, a phenomenon formerly attributed to closed loop neuromuscular effects. The continued improvement of this model could eventually result in the early stage mathematical prediction of the effectiveness of emerging cockpit technology and preprocessing algorithms, prior to costly hardware development and flight evaluation.

DOI

10.25777/1jfr-jh64

Share

COinS