Date of Award

Spring 2003

Document Type


Degree Name

Doctor of Philosophy (PhD)


Mathematics and Statistics


Computational and Applied Mathematics

Committee Director

Constance M. Schober

Committee Member

David G. Lasseigne

Committee Member

Fang Q. Hu

Committee Member

David E. Keyes

Committee Member

Chester E. Grosch


Symplectic (area-preserving) integrators for Hamiltonian ordinary differential equations have shown to be robust, efficient and accurate in long-term calculations. In this thesis, we show how symplectic integrators have a natural generalization to Hamiltonian PDEs by introducing the concept of multi-symplectic partial differential equations (PDEs). In particular, we show that multi-symplectic PDEs have an underlying spatio-temporal multi-symplectic structure characterized by a multi-symplectic conservation law MSCL). Then multi-symplectic integrators (MSIs) are numerical schemes that preserve exactly the MSCL. Remarkably, we demonstrate that, although not designed to do so, MSIs preserve very well other associated local conservation laws and global invariants, such as the energy and the momentum, for very long periods of time. We develop two types of MSIs, based on finite differences and Fourier spectral approximations, and illustrate their superior performance over traditional integrators by deriving new numerical schemes to the well known 1D nonlinear Schrödinger and sine-Gordon equations and the 2D Gross-Pitaevskii equation. In sensitive regimes, the spectral MSIs are not only more accurate but are better at capturing the spatial features of the solutions. In particular, for the sine-Gordon equation we show that its phase space, as measured by the nonlinear spectrum associated with it, is better preserved by spectral MSIs than by spectral non-symplectic Runge-Kutta integrators. Finally, to further understand the improved performance of MSIs, we develop a backward error analysis of the multi-symplectic centered-cell discretization for the nonlinear Schrödinger equation. We verify that the numerical solution satisfies to higher order a nearby modified multi-symplectic PDE and its modified multi-symplectic energy conservation law. This implies, that although the numerical solution is an approximation, it retains the key feature of the original PDE, namely its multi-symplectic structure.





Included in

Mathematics Commons