Date of Award

Summer 2003

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Mathematics and Statistics

Program/Concentration

Computational and Applied Mathematics

Committee Director

Hideaki Kaneko

Committee Director

Richard D. Noren

Committee Member

Charlie H. Cooke

Committee Member

Fang Q. Hu

Committee Member

Duc T. Nguyen

Abstract

In this dissertation, we develop the Petrov-Galerkin method and the iterated Petrov-Galerkin method for a class of nonlinear Hammerstein equation. We also investigate the superconvergence phenomenon of the iterated Petrov-Galerkin and degenerate kernel numerical solutions of linear and nonlinear integral equations with a class of wavelet basis. The Fredholm integral equations and the Hammerstein equations are considered in linear and nonlinear cases respectively. Alpert demonstrated that an application of a class of wavelet basis elements in the Galerkin approximation of the Fredholm equation of the second kind leads to a system of linear equations which is sparse. The main concern of this dissertation is to address the issue of how this sparsity manifests itself in the setting of nonlinear equations, particularly for Hammerstein equations. We demonstrate that sparsity appears in the Jacobian matrix when one attempts to solve the system of nonlinear equations by the Newton's iterative method. Overall, the dissertation generalizes the results of Alpert to nonlinear equations setting as well as the results of Chen and Xu, who discussed the Petrov-Galerkin method for Fredholm equation, to nonlinear equations setting.

DOI

10.25777/fsn9-g885

ISBN

9780496584963

Included in

Mathematics Commons

Share

COinS