Date of Award

Summer 2009

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Mathematics and Statistics

Program/Concentration

Computational and Applied Mathematics

Committee Director

David G. Lasseigne

Committee Member

John Adam

Committee Member

Richard Noren

Committee Member

Robert Ash

Abstract

Reactive-diffusive systems modeling physical phenomena in certain situations develop a singularity at a finite value of the independent variable referred to as "blow-up." The attempt to find the blow-up time analytically is most often impossible, thus requiring a numerical determination of the value. The numerical methods often use a priori knowledge of the blow-up solution such as monotonicity or self-similarity. For equations where such a priori knowledge is unavailable, ad hoc methods were constructed. The object of this research is to develop a simple and consistent approach to find numerically the blow-up solution without having a priori knowledge or resorting to other ad hoc methods. The proposed method allows the investigator the ability to distinguish whether a singular solution or a non-singular solution exists on a given interval. Step size in the vicinity of a singular solution is automatically adjusted. The programming of the proposed method is simple and uses well-developed software for most of the auxiliary routines. The proposed numerical method is mainly concerned with the integration of nonlinear integral equations with Abel-type kernels developed from combustion problems, but may be used on similar equations from other fields. To demonstrate the flexibility of the proposed method, it is applied to ordinary differential equations with blow-up solutions or to ordinary differential equations which exhibit extremely stiff structure.

DOI

10.25777/1vgh-ev86

ISBN

9781109335811

Share

COinS