Date of Award

Spring 2018

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Modeling Simul & Visual Engineering

Committee Director

John Sokolowski

Committee Member

Andrew Collins

Committee Member

Rick McKenzie

Abstract

The United States and our allies and partners have adopted a humane approach to warfare based on established principle of the laws of war centered on the principles of Military Necessity, Humanity, Proportionality, Distinction, and Honor. These principles dictate that US Military forces conduct warfare with a careful consideration of our impact on civilian populations with a special duty to protect and limit harm as much as possible given the accomplishment of a mission. Likewise, the US Military has developed a sound counterinsurgency and unified action military model that recognizes that warfare is not fought simply with kinetic force, but rather is conducted across an array of areas, including the battle for “hearts and minds” of civilian populations to assist with military actions and legitimize lawful governments. These two factors contribute to a steady requirement to train military forces to respond properly when confronted with civilians on the battlefield. Unfortunately, the only viable method to provide this training is to employ large numbers of role-players – either in a live training setting or controlling entities in a wargame. These role-players must either be hired or be tasked from other military units. There are currently no viable autonomous solutions. The result is that commanders often choose to forego this training as too costly – which could have serious long-term ramifications for military forces confronting civilians in the real world.

Can agent based modelling accurately represent civilians confronted with military operations to provide realistic training for military leaders and Soldiers? This thesis investigates this question and develops an agent-based model to explore the answer.

DOI

10.25777/zkq4-5t75

ISBN

9780438022003

Beam-sup.txt (47 kB)
NetLogo code

Share

COinS