Document Type


Publication Date




Publication Title

Limnology and Oceanography








Studies of upwelling centers in the eastern Pacific suggest that maximum rates of nitrate uptake (light and nutrient saturated) increase, or shift-up, as newly upwelled water moves downstream. The rate of shift-up appears to be related to irradiance and the ambient concentration of limiting nutrient at the time of upwelling. A mathematical model was developed to evaluate effects of irradiance and initial nitrate concentration on temporal patterns of shift-up and subsequent time scales of nutrient utilization over a range of simulated upwelling conditions. When rates consistent with field studies were used, complete shift-up was possible only under certain conditions, and the time scale was on the order of 7-10 d. These results are consistent with field observations. Increased initial nitrate concentrations resulted in more rapid depletion of the nutrient supply. Making acceleration of V max constant and independent of the nitrate concentration reversed the qualitative pattern of nutrient utilization and predicted longer time scales in the region of optimal growth (12- 15 d) than have been observed in the field. Since changes in nitrogen-specific V max observed in situ may be due to downstream sinking of detrital nitrogen, a third hypothesis was evaluated, in which there was no shift-up in Vmax. This last scenario is untenable, predicting time scales of nutrient utilization two to three times longer than observed in the field.

Original Publication Citation

Zimmerman, R.C., Kremer, J.N., & Dugdale, R.C. (1987). Acceleration of nutrient uptake by phytoplankton in a coastal upwelling ecosystem: A modeling analysis. Limnology and Oceanography, 32(2), 359-367. doi: 10.4319/lo.1987.32.2.0359