Document Type

Editorial

Publication Date

8-2016

DOI

10.1007/s10498-016-9297-z

Publication Title

Aquatic Geochemistry

Volume

22

Issue

4

Pages

271-274

Abstract

( First paragrapg) One can find different historical perspectives on the development of studying the chemistry of oceans as well as names for this study—marine chemistry, chemistry of the sea, marine aquatic chemistry, marine biogeochemistry, or chemical oceanography. It could be argued that chemical oceanography is the most inclusive for an earth science since oceanography itself is an integrated discipline that links the biology, chemistry, geology, and physics together. Regardless of the name, perhaps the first intensive, modern/post-nineteenth century study of the ocean’s chemistry was the GEOSECS Program from ca. 1970–1978. The significance of GEOSECS was that it examined the chemistry of the world’s oceans from nutrients to radionuclides, and even a few trace elements, but in a physical context of ocean circulation (e.g., Craig 1972). Thomas M. Church (Figs. 1 and 2) was ‘‘born’’ into the GEOSECS world, receiving his Ph.D. in 1970 from Scripps Institution of Oceanography in the laboratory of Edward Goldberg with the first examination of marine barite in the world’s oceans. GEOSECS was a ‘‘blue water’’ program, but Tom Church decided to take the road less travelled at the time to examine chemical processes in the coastal zone. The coastal zone has been described, both then and now and always somewhat facetiously, as the ‘‘brown ring around the bathtub,’’ but many would argue that this minimizes its importance since it is here where continental weathering products are primarily introduced to the ocean and where many of these same products are also removed. Primary productivity is at a maximum in coastal waters, and human populations and effects are also concentrated here.

Comments

Web of Science: "Free full-text from publisher."

Original Publication Citation

Cutter, G. A., & Burdige, D. J. (2016). A tribute to Thomas M. Church: Exploring chemical oceanography in the coastal zone-the history and future. Aquatic Geochemistry, 22(4), 271-274. doi:10.1007/s10498-016-9297-z

ORCID

0000-0001-6744-6718 (Cutter), 0000-0002-8859-7096 (Burdige)

Share

 
COinS