Document Type
Article
Publication Date
2016
DOI
10.1103/PhysRevC.94.055201
Publication Title
Physical Review C
Volume
94
Issue
5
Pages
055201 (1-25)
Abstract
Beam-target double-spin asymmetries and target single-spin asymmetries in exclusive π+ and quasiexclusive π- electroproduction were obtained from scattering of 1.6- to 5.7-GeV longitudinally polarized electrons from longitudinally polarized protons (for π+) and deuterons (for π-) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic range covered is 1.1 < W < 2.6 GeV and 0.05 < Q2 < 5 GeV2, with good angular coverage in the forward hemisphere. The asymmetry results were divided into approximately 40 000 kinematic bins for π+ from free protons and 15 000 bins for π- production from bound nucleons in the deuteron. The present results are found to be in reasonable agreement with fits to previous world data for W < 1.7 GeV and Q2 < 0.5 GeV2, with discrepancies increasing at higher values of Q2, especially for W > 1.5 GeV. Very large target-spin asymmetries are observed for W > 1.6 GeV. When combined with cross-section measurements, the present results can provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q2, for resonances with masses as high as 2.3 GeV.
Original Publication Citation
Bosted, P. E., Biselli, A. S., Careccia, S., Dodge, G., Fersch, R., Guler, N., . . . Collaboration, C. (2016). Target and beam target spin asymmetries in exclusive π+ and π- electroproduction with 1.6 to 5.7 GeV electrons Physical Review C, 94(5), 055201. doi:10.1103/PhysRevC.94.055201
ORCID
0000-0003-1582-2376 (Dodge), 0000-0003-2243-6836 (Kuhn), 0000-0001-5416-2900 (Weinstein)
Repository Citation
Bosted, P. E.; Careccia, S.; Dodge, G.; Kuhn, S. E.; Prok, Y.; Amaryan, M. J.; Torayev, B.; Weinstein, L. B.; Zhao, Z. W.; and CLAS Collaboration, "Target and Beam Target Spin Asymmetries in Exclusive π+ and π- Electroproduction with 1.6 to 5.7 GeV Electrons" (2016). Physics Faculty Publications. 153.
https://digitalcommons.odu.edu/physics_fac_pubs/153
Comments
"Yes, the author or the author's employer may use all or part of the APS published article, including the APS-prepared version (e.g., the PDF from the online journal) without revision or modification, on the author's or employer's website as long as a fee is not charged. If a fee is charged, then APS permission must be sought. In all cases, the appropriate bibliographic citation and notice of the APS copyright must be included."
© American Physical Society