Document Type


Publication Date




Publication Title

Physical Review C






035502 (6 pg.)


An ab initio Green’s function Monte Carlo (GFMC) method is introduced for calculating total rates of muon weak capture in light nuclei with mass number A ≤ 12. As a first application of the method, we perform a calculation of the rate in 3H and 4He in a dynamical framework based on realistic two- and three-nucleon interactions and realistic nuclear charge-changing weak currents. The currents include one- and two-body terms induced by π-and ρ-meson exchange, and N-to-Δ excitation, and are constrained to reproduce the empirical value of the Gamow-Teller matrix element in tritium. We investigate the sensitivity of theoretical predictions to current parametrizations of the nucleon axial and induced pseudoscalar form factors as well as to two-body contributions in the weak currents. The large uncertainties in the measured 4He rates obtained from bubble-chamber experiments (carried out over 50 years ago) prevent us from drawing any definite conclusions. No data exist for 3H, but results are compared to those of a recent Faddeev calculation as a validation of the present GFMC method.


The author or the author's employer may use all or part of the APS published article, including the APS-prepared version (e.g., the PDF from the online journal) without revision or modification, on the author's or employer's website as long as a fee is not charged. If a fee is charged, then APS permission must be sought. In all cases, the appropriate bibliographic citation and notice of the APS copyright must be included.

©2019 American Physical Society

Original Publication Citation

Lovato, A., Rocco, N., & Schiavilla, R. (2019). Muon capture in nuclei: An ab initio approach based on green's function Monte Carlo methods. Physical Review C, 100(3), 035502. doi:10.1103/PhysRevC.100.035502


0000-0001-6049-6683 (Schiavilla)

Included in

Nuclear Commons