Home Institution, City, State

Old Dominion University, Norfolk, Virginia



Publication Date

Summer 2021


Three-body interactions play an important role throughout modern-day particle, nuclear, and hadronic physics; many experimentally observed reactions of interest for testing the Standard Model result in final states composed of three particles or more. Due to these issues, a full description of three-body interactions from Quantum Chromodynamics is required. The focus of this project was to extend previous results for a two-body subsystem with a bound state to include resonance channels. We first derived a novel single-variable observable, denoted as an intensity distribution, which is proportional to the probability density of the three-body scattering amplitude. We explored this distribution in the context of established results for a two-body subsystem with a bound state. We then developed a model two-body scattering amplitude with both a resonant and a bound state and examined the three-body scattering intensity distribution for this system. For each of these two-body scattering subsystem models, intensity distributions were computed, resulting in novel graphs of relevant scattering behavior.


Particle physics, Nuclear physics, Hadronic physics, Three-body interactions, Resonance channels, Scattering





Download Poster (1.6 MB)

Download Final Paper by Taylor Powell (617 KB)

Solving Relativistic Three-Body Integral Equations in the Presence of Bound States and Resonances

Included in

Physics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.