Date of Award
Spring 2007
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Biological Sciences
Program/Concentration
Ecological Sciences
Committee Director
Frank P. Day
Committee Member
Joseph Rule
Committee Member
Kneeland Nesius
Abstract
A major gap in whole-plant ecology lies with our understanding of root system growth, function and distribution. Large belowground structures, in addition to fine roots, are of particular interest because of their role in carbon sequestration. Non-destructive methods, including ground-penetrating radar (GPR) and minirhizotron observation tubes, were used to investigate effects of elevated CO2 on root biomass, dynamics (productivity, mortality, and turnover), root persistence and architecture in a fire dominated scrub-oak ecosystem. Open-top chambers have been exposed to elevated atmospheric CO2 for the past eleven years at Kennedy Space Center, Florida. No significant sustained CO2 treatment effects were observed in fine root length density, due to root closure. Root density at lower depths increased to match abundance levels observed in the upper portions of the soil profile. CO2 significantly affected fine root production, mortality, and turnover during the early years of fumigation; however, this effect disappeared as fine root closure occurred. Survivorship analysis suggested the smallest fine root size classes (2. Overall, 86% of the total biomass was belowground with 78% allocated to coarse roots and 22% to fine roots. Coarse root architecture determinations confirmed the complexity and abundance of large belowground structures in this system. Large roots with sharp angles or that transverse the study areas were most likely to be observed in the GPR images. Large root burls were readily visualized in the GPR based architecture models. The results suggest that coarse roots may play a large role in the sequestration of carbon belowground in scrub-oak ecosystems, thus having implications to carbon dynamics, CO2 treatment memory, and plant regeneration following disturbances such as fire.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/cac7-n592
ISBN
9780549040972
Recommended Citation
Stover, Daniel B..
"Effects of Elevated Atmospheric CO2 on Root Dynamics, Biomass and Architecture in a Scrub-Oak Ecosystem at Kennedy Space Center, Florida"
(2007). Doctor of Philosophy (PhD), Dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/cac7-n592
https://digitalcommons.odu.edu/biology_etds/77