Document Type
Article
Publication Date
2014
DOI
10.1111/hrd2.00044
Publication Title
Hereditas
Volume
151
Pages
43-54
Abstract
The next generation sequencing revolution has enabled rapid discovery of genetic markers, however, development of fully functioning new markers still requires a long and costly process of marker validation. This study reports a rapid and economical approach for the validation and deployment of polymorphic microsatellite markers obtained from a 454 pyrosequencing library of Atlantic cod, Gadus morhua, Linnaeus 1758. Primers were designed from raw reads to amplify specific amplicon size ranges, allowing effective PCR multiplexing. Multiplexing was combined with a three-primer PCR approach using four universal tails to label amplicons with separate fluorochromes. A total of 192 primer pairs were tested, resulting in 73 polymorphic markers. Of these, 55 loci were combined in six multiplex panels each containing between six and eleven markers. Variability of the loci was assessed on G. morhua from the Celtic Sea (n = 46) and the Scotian Shelf (n = 46), two locations that have shown genetic differentiation in previous studies. Multilocus FST between the two samples was estimated at 0.067 (P = 0.001). After three loci potentially under selection were excluded, the global FST was estimated at 0.043 (P = 0.001). Our technique combines three-primer and multiplex PCR techniques, allowing simultaneous screening and validation of relatively large numbers of microsatellite loci.
Original Publication Citation
Vartia, S., Collins, P. C., Cross, T. F., Fitzgerald, R. D., Gauthier, D. T., McGinnity, P., . . . Carlsson, J. (2014). Multiplexing with three-primer PCR for rapid and economical microsatellite validation. Hereditas, 151(2-3), 43-54. doi: 10.1111/hrd2.00044
Repository Citation
Vartia, Salla; Collins, Patrick C.; Cross, Thomas F.; Fitzgerald, Richard D.; Gauthier, David T.; Mcginnity, Philip; Mirimin, Luca; and Carlsson, Jens, "Multiplexing with Three-Primer PCR for Rapid and Economical Microsatellite Validation" (2014). Biological Sciences Faculty Publications. 158.
https://digitalcommons.odu.edu/biology_fac_pubs/158