The Tree of Life and a New Classification of Bony Fishes
Document Type
Article
Publication Date
2013
DOI
10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288
Publication Title
PLoS Currents
Volume
5
Abstract
The tree of life of fishes is in a state of flux because we still lack a comprehensive phylogeny that includes all major groups. The situation is most critical for a large clade of spiny-finned fishes, traditionally referred to as percomorphs, whose uncertain relationships have plagued ichthyologists for over a century. Most of what we know about the higher-level relationships among fish lineages has been based on morphology, but rapid influx of molecular studies is changing many established systematic concepts. We report a comprehensive molecular phylogeny for bony fishes that includes representatives of all major lineages. DNA sequence data for 21 molecular markers (one mitochondrial and 20 nuclear genes) were collected for 1410 bony fish taxa, plus four tetrapod species and two chondrichthyan outgroups (total 1416 terminals). Bony fish diversity is represented by 1093 genera, 369 families, and all traditionally recognized orders. The maximum likelihood tree provides unprecedented resolution and high bootstrap support for most backbone nodes, defining for the first time a global phylogeny of fishes. The general structure of the tree is in agreement with expectations from previous morphological and molecular studies, but significant new clades arise. Most interestingly, the high degree of uncertainty among percomorphs is now resolved into nine well-supported supraordinal groups. The order Perciformes, considered by many a polyphyletic taxonomic waste basket, is defined for the first time as a monophyletic group in the global phylogeny. A new classification that reflects our phylogenetic hypothesis is proposed to facilitate communication about the newly found structure of the tree of life of fishes. Finally, the molecular phylogeny is calibrated using 60 fossil constraints to produce a comprehensive time tree. The new time-calibrated phylogeny will provide the basis for and stimulate new comparative studies to better understand the evolution of the amazing diversity of fishes.
Original Publication Citation
Betancur-R, R., Broughton, R. E., Wiley, E. O., Carpenter, K., López, J. A., Li, C., . . . Ortí, G. (2013). The tree of life and a new classification of bony fishes. PLoS Currents, 5. doi: 10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288
Repository Citation
Bentancur-R, Ricardo; Broughton, Richard E.; Wiley, Edward O.; Carpenter, Kent E.; López, J. Andrés; Li, Chenhong; Holcroft, Nancy I.; Arcila, Dahiana; Sanciangco, Millicent; Cureton Ii, James C.; Zhang, Feifei; Buser, Thaddeus; Campbell, Matthew A.; Ballesteros, Jesus A.; Roa-Varon, Adela; Willis, Stuart; Borden, W. Calvin; Rowley, Thaine; Reneau, Paulette C.; Hough, Daniel J.; Lu, Guoqing; Grande, Terry; Arratia, Gloria; and Ortí, Guillermo, "The Tree of Life and a New Classification of Bony Fishes" (2013). Biological Sciences Faculty Publications. 21.
https://digitalcommons.odu.edu/biology_fac_pubs/21