Date of Award
Spring 2018
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Computer Science
Committee Director
Stephan Olariu
Committee Member
Michele Weigle
Committee Member
Steven Zeil
Abstract
Vehicular networks are commonplace, and many applications have been developed to utilize their sensor and computing resources. This is a great utilization of these resources as long as they are mobile. The question to ask is whether these resources could be put to use when the vehicle is not mobile. If the vehicle is parked, the resources are simply dormant and waiting for use. If the vehicle has a connection to a larger computing infrastructure, then it can put its resources towards that infrastructure. With enough vehicles interconnected, there exists a computing environment that could handle many cloud-based application services. If these vehicles were electric, then they could in return receive electrical charging services.
This Thesis will develop a simple vehicle datacenter solution based upon Smart Vehicles in a parking lot. While previous work has developed similar models based upon the idea of migration of jobs due to residency of the vehicles, this model will assume that residency times cannot be predicted and therefore no migration is utilized. In order to offset the migration of jobs, a divide-and-conquer approach is created. This uses a MapReduce process to divide the job into numerous sub-jobs and process the subtask in parallel. Finally, a checkpoint will be used between the Map and Reduce phase to avoid loss of intermediate data. This will serve as a means to test the practicality of the model and create a baseline for comparison with future research.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/6pw2-7545
ISBN
9780355959895
Recommended Citation
Decker, Lloyd.
"Supporting Big Data at the Vehicular Edge"
(2018). Master of Science (MS), Thesis, Computer Science, Old Dominion University, DOI: 10.25777/6pw2-7545
https://digitalcommons.odu.edu/computerscience_etds/37
ORCID
0000-0001-6708-0752