Document Type
Article
Publication Date
1992
DOI
10.1016/0012-365x(92)90348-j
Publication Title
Discrete Mathematics
Volume
102
Issue
1
Pages
67-74
Abstract
We investigate the following conjecture of Vašek Chvátal: any weakly triangulated graph containing no induced path on five vertices is perfectly orderable. In the process we define a new polynomially recognizable class of perfectly orderable graphs called charming. We show that every weakly triangulated graph not containing as an induced subgraph a path on five vertices or the complement of a path on six vertices is charming.
Original Publication Citation
Hoang, C. T., Maffray, F., Olariu, S., & Preissmann, M. (1992). A charming class of perfectly orderable graphs. Discrete Mathematics, 102(1), 67-74. doi:10.1016/0012-365x(92)90348-j
Repository Citation
Hoang, C. T., Maffray, F., Olariu, S., & Preissmann, M. (1992). A charming class of perfectly orderable graphs. Discrete Mathematics, 102(1), 67-74. doi:10.1016/0012-365x(92)90348-j
ORCID
0000-0002-3776-216X (Olariu)
Comments
Elsevier open archive. Copyright © 1992 Published by Elsevier B.V. All rights reserved.