Document Type
Conference Paper
Publication Date
2021
DOI
10.18653/v1/2021.sdp-1.11
Publication Title
Proceedings of the Second Workshop on Scholarly Document Processing
Pages
91-96
Conference Name
Second Workshop on Scholarly Document Processing, June 10, 2021, Virtual, Online
Abstract
Presentation slides generated from original research papers provide an efficient form to present research innovations. Manually generating presentation slides is labor-intensive. We propose a method to automatically generates slides for scientific articles based on a corpus of 5000 paper-slide pairs compiled from conference proceedings websites. The sentence labeling module of our method is based on SummaRuNNer, a neural sequence model for extractive summarization. Instead of ranking sentences based on semantic similarities in the whole document, our algorithm measures the importance and novelty of sentences by combining semantic and lexical features within a sentence window. Our method outperforms several baseline methods including SummaRuNNer by a significant margin in terms of ROUGE score.
Rights
© 2023 ACL.
"Materials published in or after 2016 are licensed on a Creative Commons Attribution 4.0 International (CC BY 4.0) License."
Original Publication Citation
Sefid, A., Wu, J., Mitra, P., & Giles, L. (2021) Extractive research slide generation using windowed labeling ranking. In Proceedings of the Second Workshop on Scholarly Document Processing, (pp. 91-96). Online. Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.sdp-1.11
Repository Citation
Sefid, A., Wu, J., Mitra, P., & Giles, L. (2021) Extractive research slide generation using windowed labeling ranking. In Proceedings of the Second Workshop on Scholarly Document Processing, (pp. 91-96). Online. Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.sdp-1.11
ORCID
0000-0003-0173-4463 (Wu)