Author Information

Kathy Wang, William & Mary

Abstract

As artificial intelligence continues to evolve rapidly with emerging innovations, mass-scale digitization could be disrupted due to unfair algorithms with historically biased data. With the rising concerns of algorithmic bias, detecting biases is essential in mitigating and implementing an algorithm that promotes inclusive representation. The spread of ubiquitous artificial intelligence means that improving modeling robustness is at its most crucial point. This paper examines the omnipotence of artificial intelligence and its resulting bias, examples of AI bias in different groups, and a potential framework and mitigation strategies to improve AI fairness and remove AI bias from modeling techniques.

Faculty Advisor/Mentor

Kazi Islam

Document Type

Paper

Disciplines

Artificial Intelligence and Robotics | Information Security | Theory and Algorithms

DOI

10.25776/8ktt-kk62

Publication Date

2022

Upload File

wf_yes

Share

COinS
 

Mitigation of Algorithmic Bias to Improve AI Fairness

As artificial intelligence continues to evolve rapidly with emerging innovations, mass-scale digitization could be disrupted due to unfair algorithms with historically biased data. With the rising concerns of algorithmic bias, detecting biases is essential in mitigating and implementing an algorithm that promotes inclusive representation. The spread of ubiquitous artificial intelligence means that improving modeling robustness is at its most crucial point. This paper examines the omnipotence of artificial intelligence and its resulting bias, examples of AI bias in different groups, and a potential framework and mitigation strategies to improve AI fairness and remove AI bias from modeling techniques.