Date of Award
Spring 2007
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Dental Hygiene
Program/Concentration
Dental Hygiene
Committee Director
Gayle McCombs
Committee Member
Mournir Laroussi
Committee Member
Wayne Hynes
Committee Member
Lynn Tolle
Call Number for Print
Special Collections LD4331.D46 M67 2007
Abstract
Non-equilibrium atmospheric pressure plasma, also known as cold plasma, is a state of matter that consists of a mix of neutral and charged particles. Plasma generates chemically reactive species and ultraviolet radiation making them useful in decontamination applications (Kong & Laroussi, 2003). Research regarding the inactivation of gram-positive bacteria, such as Bacillus atrophaeus, by cold plasma has been studied by Laroussi et al. (2003); however, there is limited research regarding the germicidal effectiveness of cold plasma on the microorganisms Geobacillus stearothermophilus and Bacillus cereus. The purpose of this study was to determine if cold plasma technology inactivates heat resistant microorganisms, specifically, G. stearothermophilus and B. cereus vegetative cells and spores. Methods: The study consisted of 762 G. stearothermophilus and B. cereus samples exposed to cold plasma at various times and 219 control samples (N=981). Bacteria were inoculated and exposed to either indirect or direct cold plasma, incubated for 12 to 16 hours and number of colony forming units (CFU) determined. The percentage kill and log concentration reductions were computed utilizing the CFU and data was analyzed using one-way ANOVA, Kruskal Wallis and Tukey's tests at the .05 level. Results: There was a statistically significant difference in the inactivation of G. stearothermophilus vegetative cells receiving indirect exposure (p=.0001) and direct exposure (p=.0013) and B. cereus vegetative cells and spores exposed to indirect and direct cold plasma (p=.0001 for both). Cold plasma exposure to G. stearothermophilus spores demonstrated no statistically significant difference in inactivation of microorganisms receiving indirect (p=.7208) and direct (p=.0835) exposure. Conclusion: Results indicate that indirect and direct cold plasma exposure significantly inactivated G. stearothermophilus vegetative cells and B. cereus vegetative cells and spores; however, G. stearothermophilus spores were not significantly inactivated; therefore, sterility was not achieved.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/5k5s-9n26
Recommended Citation
Morris, Angela D..
"Bactericidal Effects of Cold Plasma Technology on Geobacillus stearothermophilus and Bacillus cereus Microorganisms"
(2007). Master of Science (MS), Thesis, Dental Hygiene, Old Dominion University, DOI: 10.25777/5k5s-9n26
https://digitalcommons.odu.edu/dentalhygiene_etds/84