Date of Award
Summer 2019
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Electrical & Computer Engineering
Committee Director
Yucheng Zhang
Committee Member
Shirshak Dhali
Committee Member
Shu Xiao
Abstract
This research focuses on the study of using an inductive-coupled Wireless Power Transfer (WPT) system for electric vehicle charging applications in Medium Voltage DC (MVDC) power networks. Implementing WPT in Electric Vehicles (EVs) can provide a convenient alternative charging option, versus static charging in a station that would take hours. Also, it can prevent the potential of electrocution hazards that might occur due to the usage of physical medium like wires in EV charging. Even though inductive coupling has been applied in some applications of WPT, it is still not efficient enough to transfer high power at the kilowatts level due to weak coupling between the transmitter and the receiver. Using optimally-specified resonant circuits along with inductive coupling can enhance the coupling and make the system more efficient for practical applications.
This research aims to design and analyze the performance of a 5-KW WPT circuit. The optimal specification of a resonant circuit is studied and discussed. Theoretical calculations are performed to find the component values in the circuit to reach. The WPT system is firstly verifiedmby performing simulation tests in the MATLAB/SIMULINK environment and then on a low power hardware testbed.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/zyjx-fz14
ISBN
9781687937391
Recommended Citation
Daida, Sarika R..
"A Design of Inductive Coupling Wireless Power Transfer System for Electric Vehicle Applications"
(2019). Master of Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/zyjx-fz14
https://digitalcommons.odu.edu/ece_etds/169