Date of Award
Winter 1992
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Electrical & Computer Engineering
Program/Concentration
Electrical Engineering
Committee Director
Joseph L. Hilbey
Committee Member
Oscar R. Gonzalez
Committee Member
Griffith J. McRee
Committee Member
Carl A. Schulz
Abstract
We discuss topics in the theory of nonlinear stochastic control, estimation, and decision via a probabilistic approach using measure transformations and martingale theory. First, we investigate the problem of estimating a diffusion process using coordinate transformations and measure transformations, both locally and globally; this is the analog of nonlinear coordinate and state feedback transformations used to obtain exact linearization in nonlinear deterministic control problems. Our results are new in that we use a probabilistic approach rather than a purely geometric one, and also in that we derive representations when the processes are defined locally rather than just globally. A gauge transformation then leads to a Feynman-Kac formula that is related to the unnormalized conditional density and subsequent bounds of filter estimates, where some of these bounds are extensions of pre-existing results while others are presented here for the first time. Second, we present new methods and new results in obtaining a minimum principle for partially observed diffusions using calculus of variations when the control variable is present only in the drift coefficient and correlation exists between state and observation noise, and then when the control variable exists in both drift and diffusion coefficients and no correlation exists. Here the problem is formulated as one of complete information, but instead of considering the unnormalized conditional density as the new state, this density is decomposed into two measure-valued processes and leads to a separation principle reminiscent of the linear-quadratic-Gaussian problem and stochastic flows of Euclidean processes. Third, we study the decision problem using likelihood-ratio tests and evaluate the performance using Chernoff bounds. We present new results by expressing both likelihood-ratios and error-probabilities in terms of a ratio of two unnormalized conditional densities where each satisfies a stochastic differential equation that in some cases can be solved in closed form.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/49xw-2678
Recommended Citation
Charalambous, Charalambos D..
"Topics in Nonlinear Stochastic Control, Estimation, and Decision, Using a Measure Transformation Approach"
(1992). Doctor of Philosophy (PhD), Dissertation, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/49xw-2678
https://digitalcommons.odu.edu/ece_etds/176