Date of Award

Summer 2014

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Electrical & Computer Engineering

Program/Concentration

Computer Engineering

Committee Director

Jiang Li

Committee Member

Frederic D. McKenzie

Committee Member

Dean J. Krusienski

Committee Member

Yaohang Li

Abstract

Because of technological advances, a trend occurs for data sets increasing in size and dimensionality. Processing these large scale data sets is challenging for conventional computers due to computational limitations. A framework for nonlinear dimensionality reduction on large databases is presented that alleviates the issue of large data sets through sampling, graph construction, manifold learning, and embedding. Neighborhood selection is a key step in this framework and a potential area of improvement. The standard approach to neighborhood selection is setting a fixed neighborhood. This could be a fixed number of neighbors or a fixed neighborhood size. Each of these has its limitations due to variations in data density. A novel adaptive neighbor-selection algorithm is presented to enhance performance by incorporating sparse ℓ 1-norm based optimization. These enhancements are applied to the graph construction and embedding modules of the original framework. As validation of the proposed ℓ1-based enhancement, experiments are conducted on these modules using publicly available benchmark data sets. The two approaches are then applied to a large scale magnetic resonance imaging (MRI) data set for brain tumor progression prediction. Results showed that the proposed approach outperformed linear methods and other traditional manifold learning algorithms.

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

DOI

10.25777/g7sz-qx18

ISBN

9781321316513

Share

COinS