Date of Award

Summer 8-2022

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Electrical & Computer Engineering

Program/Concentration

Electrical and Computer Engineering

Committee Director

Jiang Li

Committee Member

Dimitrie Popescu

Committee Member

Chung Hao Chen

Committee Member

Jian Wu

Abstract

Deep learning has proved to be successful for many computer vision and natural language processing applications. In this dissertation, three studies have been conducted to show the efficacy of deep learning models for computer vision and natural language processing. In the first study, an efficient deep learning model was proposed for seagrass scar detection in multispectral images which produced robust, accurate scars mappings. In the second study, an arithmetic deep learning model was developed to fuse multi-spectral images collected at different times with different resolutions to generate high-resolution images for downstream tasks including change detection, object detection, and land cover classification. In addition, a super-resolution deep model was implemented to further enhance remote sensing images. In the third study, a deep learning-based framework was proposed for fact-checking on social media to spot fake scientific news. The framework leveraged deep learning, information retrieval, and natural language processing techniques to retrieve pertinent scholarly papers for given scientific news and evaluate the credibility of the news.

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

DOI

10.25777/1r20-d084

ISBN

9798351481456

Share

COinS