Date of Award
Winter 2018
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Electrical & Computer Engineering
Committee Director
Dean Krusienski
Committee Member
Christian Zemlin
Committee Member
Anastasia Raymer
Committee Member
Jiang Li
Abstract
Millions of people around the world suffer from severe neuromuscular disorders such as spinal cord injury, cerebral palsy, amyotrophic lateral sclerosis (ALS), and others. Many of these individuals cannot perform daily tasks without assistance and depend on caregivers, which adversely impacts their quality of life. A Brain-Computer Interface (BCI) is technology that aims to give these people the ability to interact with their environment and communicate with the outside world. Many recent studies have attempted to decode spoken and imagined speech directly from brain signals toward the development of a natural-speech BCI. However, the current progress has not reached practical application. An approach to improve the performance of this technology is to better understand the underlying speech processes in the brain for further optimization of existing models. In order to extend research in this direction, this thesis aims to characterize and decode the auditory and articulatory features from the motor cortex using the electrocorticogram (ECoG). Consonants were chosen as auditory representations, and both places of articulation and manners of articulation were chosen as articulatory representations. The auditory and articulatory representations were decoded at different time lags with respect to the speech onset to determine optimal temporal decoding parameters. In addition, this work explores the role of the temporal lobe during speech production directly from ECoG signals. A novel decoding model using temporal lobe activity was developed to predict a spectral representation of the speech envelope during speech production. This new knowledge may be used to enhance existing speech-based BCI systems, which will offer a more natural communication modality. In addition, the work contributes to the field of speech neurophysiology by providing a better understanding of speech processes in the brain.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/yhb9-vq36
ISBN
9780438900332
Recommended Citation
Baker, Hassan.
"Characterization of Language Cortex Activity During Speech Production and Perception"
(2018). Master of Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/yhb9-vq36
https://digitalcommons.odu.edu/ece_etds/40
Included in
Biomedical Engineering and Bioengineering Commons, Computer Engineering Commons, Neurosciences Commons