Date of Award
Summer 2011
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Electrical & Computer Engineering
Program/Concentration
Electrical and Computer Engineering
Committee Director
Gon Namkoong
Committee Member
Helmut Baumgart
Committee Member
Sylvain Marsillac
Call Number for Print
Special Collections LD4331.E55 L37 2011
Abstract
Polymer-fullerene bulk heterojunction solar cells have been a rapidly improving technology over the past decade. To further improve the relatively low energy conversion efficiencies of these solar cells, several modifications need to be made to the overall device structure. Emerging technologies include cells that are fabricated with interfacial layers to facilitate charge transport, and tandem structures are being introduced to harness the absorption spectrum of polymers with varying bandgap energies.
When new structures are implemented, each layer of the cell must be optimized in order for the entire device to function efficiently. The most volatile layer of these devices is the photoactive layer solution of poly-3(hexylthiophene-2.5-diyl) (P3HT) and [6,6] phenyl-C61-butyric acid methyl ester (PC61BM). Even slight variations in pre-application and post-treatment will lead to large variations in the electrical, physical. and optical properties of the solar cell module.
To improve the effectiveness of the photoactive layer, the material concentration of P3HT and PC61BM in the liquid phase, prior to application, was altered. The weight ratio of P3HT to PC61BM was kept at a constant I to 0.8, while the amounts of each dissolved in 2 mL of chlorobenzene were varied. Solar cells were fabricated. and J-V characterizations were performed to determine the electrical traits of the devices. Atomic force microscopy (AFM) measurements were done on the photoactive layer films to determine the physical characteristics of the films such as overall surface topology and RMS roughness. Also, variable angle spectroscopic ellipsometry (VASE) was used to determine film thickness and extinction coefficient of the active layers. To further understand the optical properties of the polymer-fullerene blend. the absorption spectrum of the films were calculated through UV-VIS spectrophotometry.
It was found that an increased concentration of the polymer-fullerene blend prior to application increased overall device efficiency. A photoactive layer solution prepared with 30 mg P3HT and 24 mg PC61BM, when implemented in an organic solar cell, produced the optimal electrical, physical, and optical characteristics.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/6ran-3r69
Recommended Citation
Latimer, Kevin A..
"Improving the Efficiency of Organic Solar Cells by Varying the Material Concentration in the Photoactive Layer"
(2011). Master of Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/6ran-3r69
https://digitalcommons.odu.edu/ece_etds/402
Included in
Electrical and Computer Engineering Commons, Engineering Physics Commons, Polymer and Organic Materials Commons