Date of Award

Summer 2002

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Electrical & Computer Engineering

Committee Director

Hani E. Elsayed-Ali

Committee Member

Linda Vahala

Committee Member

John Cooper

Committee Member

Russell Deyoung

Abstract

The impetus of this work was to develop an all solid-state Ti:sapphire laser transmitter to replace the current dye lasers that could provide a potentially compact, robust, and highly reliable laser transmitter for differential absorption lidar measurements of atmospheric ozone. Two compact, high-energy pulsed, and injection-seeded Ti:sapphire lasers operating at a pulse repetition frequency of 30 Hz and wavelengths of 867 nm and 900 nm, with M2 of 1.3, have been experimentally demonstrated and compared to model results. The Ti:sapphire lasers have shown the required output beam quality at maximum output pulse energy, 115 mJ at 867 nm and 105 mJ at 900 nm, with a slope efficiency of 40% and 32%, respectively, to achieve 30 mJ of ultraviolet laser output at 289 run and 300 nm with two LBO nonlinear crystals.

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

DOI

10.25777/y549-8118

ISBN

9780493977102

Share

COinS