Date of Award

Fall 2008

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Electrical & Computer Engineering

Committee Director

Oscar R. Gonzalez

Committee Member

N. Rao Chaganty

Committee Member

Dimitrie Popescu

Committee Member

W. Steven Gray

Abstract

Computer control systems for safety critical systems are designed to be fault tolerant and reliable, however, soft errors triggered by harsh environments can affect the performance of these control systems. The soft errors of interest which occur randomly, are nondestructive and introduce a failure that lasts a random duration. To minimize the effect of these errors, safety critical systems with error recovery mechanisms are being investigated. The main goals of this dissertation are to develop modeling and analysis tools for sampled-data control systems that are implemented with such error recovery mechanisms. First, the mathematical model and the well-posedness of the stochastic model of the sampled-data system are presented. Then this mathematical model and the recovery logic are modeled as a dynamically colored Petri net (DCPN). For stability analysis, these systems are then converted into piecewise deterministic Markov processes (PDP). Using properties of a PDP and its relationship to discrete-time Markov chains, a stability theory is developed. In particular, mean square equivalence between the sampled-data and its associated discrete-time system is proved. Also conditions are given for stability in distribution to the delta Dirac measure and mean square stability for a linear sampled-data system with recovery logic.

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

DOI

10.25777/x8ac-yf67

ISBN

9780549936398

Share

COinS