Document Type

Article

Publication Date

2005

DOI

10.1063/1.1921338

Publication Title

Journal of Applied Physics

Volume

97

Issue

11

Pages

113304 (1-8)

Abstract

An electrical breakdown model for liquids in response to a submicrosecond(∼100ns) voltage pulse is presented, and quantitative evaluations carried out. It is proposed that breakdown is initiated by field emission at the interface of pre-existing microbubbles. Impact ionization within the microbubble gas then contributes to plasma development, with cathode injection having a delayed and secondary role. Continuous field emission at the streamer tip contributes to filament growth and propagation. This model can adequately explain almost all of the experimentally observed features, including dendritic structures and fluctuations in the prebreakdown current. Two-dimensional, time-dependent simulations have been carried out based on a continuum model for water, though the results are quite general. Monte Carlo simulations provide the relevant transport parameters for our model. Our quantitative predictions match the available data quite well, including the breakdown delay times and observed optical emission.

Comments

This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in (Journal of Applied Physics, 97 (11) 113304 and may be found at http://dx.doi.org/10.1063/1.1921338.

Original Publication Citation

Qian, J., Joshi, R. P., Kolb, J., Schoenbach, K. H., Dickens, J., Neuber, A., . . . Gaudet, J. (2005). Microbubble-based model analysis of liquid breakdown initiation by a submicrosecond pulse. Journal of Applied Physics, 97(11), 113304. doi:10.1063/1.1921338

ORCID

0000-0001-7867-7773 (Schoenbach)

Share

COinS