Document Type
Article
Publication Date
2022
DOI
10.3389/frai.2021.718950
Publication Title
Frontiers in Artificial Intelligence
Volume
4
Pages
718950 (1-11)
Abstract
This work investigates the efficacy of deep learning (DL) for classifying C100 superconducting radio-frequency (SRF) cavity faults in the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. CEBAF is a large, high-power continuous wave recirculating linac that utilizes 418 SRF cavities to accelerate electrons up to 12 GeV. Recent upgrades to CEBAF include installation of 11 new cryomodules (88 cavities) equipped with a low-level RF system that records RF time-series data from each cavity at the onset of an RF failure. Typically, subject matter experts (SME) analyze this data to determine the fault type and identify the cavity of origin. This information is subsequently utilized to identify failure trends and to implement corrective measures on the offending cavity. Manual inspection of large-scale, time-series data, generated by frequent system failures is tedious and time consuming, and thereby motivates the use of machine learning (ML) to automate the task. This study extends work on a previously developed system based on traditional ML methods (Tennant and Carpenter and Powers and Shabalina Solopova and Vidyaratne and Iftekharuddin, Phys. Rev. Accel. Beams, 2020, 23, 114601), and investigates the effectiveness of deep learning approaches. The transition to a DL model is driven by the goal of developing a system with sufficiently fast inference that it could be used to predict a fault event and take actionable information before the onset (on the order of a few hundred milliseconds). Because features are learned, rather than explicitly computed, DL offers a potential advantage over traditional ML. Specifically, two seminal DL architecture types are explored: deep recurrent neural networks (RNN) and deep convolutional neural networks (CNN). We provide a detailed analysis on the performance of individual models using an RF waveform dataset built from past operational runs of CEBAF. In particular, the performance of RNN models incorporating long short-term memory (LSTM) are analyzed along with the CNN performance. Furthermore, comparing these DL models with a state-of-the-art fault ML model shows that DL architectures obtain similar performance for cavity identification, do not perform quite as well for fault classification, but provide an advantage in inference speed.
Original Publication Citation
Vidyaratne, L., Carpenter, A., Powers, T., Tennant, C., Iftekharuddin, K. M., Rahman, M. M., & Shabalina, A. S. (2022). Deep learning based superconducting radio-frequency cavity fault classification at Jefferson Laboratory. Frontiers in Artificial Intelligence, 4, 1-11, Article 718950. https://doi.org/10.3389/frai.2021.718950
Repository Citation
Vidyaratne, Lasitha; Carpenter, Adam; Powers, Tom; Tennant, Chris; Iftekharuddin, Khan M.; Rahman, Md. Monibor; and Shabalina, Anna S., "Deep Learning Based Superconducting Radio-Frequency Cavity Fault Classification at Jefferson Laboratory" (2022). Electrical & Computer Engineering Faculty Publications. 304.
https://digitalcommons.odu.edu/ece_fac_pubs/304
Included in
Artificial Intelligence and Robotics Commons, Electrical and Computer Engineering Commons, Engineering Physics Commons, Nuclear Commons
Comments
© 2022 Vidyaratne, Carpenter, Powers, Tennant, Iftekharuddin, Rahman and Shabalina.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY 4.0). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.