Document Type
Conference Paper
Publication Date
2012
DOI
10.1117/12.919365
Publication Title
Workflows and Technologies for Intelligence, Surveillance, and Reconnaissance (ISR) and Situational Awareness, Proceedings of SPIE Vol. 8386
Volume
8386
Pages
83860I (1-9)
Conference Name
SPIE Defense, Security, and Sensing, April 23-27, 2012, Baltimore Maryland
Abstract
Improvement in sensor technology such as charge-coupled devices (CCD) as well as constant incremental improvements in storage space has enabled the recording and storage of video more prevalent and lower cost than ever before. However, the improvements in the ability to capture and store a wide array of video have required additional manpower to translate these raw data sources into useful information. We propose an algorithm for automatically detecting anomalous movement patterns within full motion video thus reducing the amount of human intervention required to make use of these new data sources. The proposed algorithm tracks all of the objects within a video sequence and attempts to cluster each object's trajectory into a database of existing trajectories. Objects are tracked by first differentiating them from a Gaussian background model and then tracked over subsequent frames based on a combination of size and color. Once an object is tracked over several frames, its trajectory is calculated and compared with other trajectories earlier in the video sequence. Anomalous trajectories are differentiated by their failure to cluster with other well-known movement patterns. Adding the proposed algorithm to an existing surveillance system could increase the likelihood of identifying an anomaly and allow for more efficient collection of intelligence data. Additionally, by operating in real-time, our algorithm allows for the reallocation of sensing equipment to those areas most likely to contain movement that is valuable for situational awareness.
Rights
Copyright 2012 Society of Photo‑Optical Instrumentation Engineers (SPIE).
One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited.
Original Publication Citation
Konowicz, G., & Li, J. (2012) Real time anomaly detection in full motion video. In D. Self (Ed.), Full Motion Video (FMV) Workflows and Technologies for Intelligence, Surveillance, and Reconnaissance (ISR) and Situational Awareness, Proceedings of SPIE Vol. 8386 (83860I). SPIE of Bellingham WA. https://doi.org/10.1117/12.919365
Repository Citation
Konowicz,, Glenn; Li, Jiang; and Self, Donnie (Ed.), "Real-Time Anomaly Detection in Full Motion Video" (2012). Electrical & Computer Engineering Faculty Publications. 383.
https://digitalcommons.odu.edu/ece_fac_pubs/383
ORCID
0000-0003-0091-6986 (Li)
Included in
Data Science Commons, Electrical and Computer Engineering Commons, Numerical Analysis and Scientific Computing Commons, Theory and Algorithms Commons