Document Type

Article

Publication Date

2025

DOI

10.3390/electronics14193779

Publication Title

Electronics

Volume

14

Issue

19

Pages

3779

Abstract

Permanent magnet synchronous motors (PMSMs) are widely favored by manufacturers for use in electric vehicles (EVs) because of their many benefits, which include high power density at high speeds, ruggedness, potential for high efficiency, and reduced control complexity. However, since the Back Electromotive Force (EMF) increases proportionally with the motor’s rotational speed, it must be carefully controlled at high speeds. Flux-weakening (FW) control is required to avoid excessive electromagnetic flux beyond the power source and inverter’s voltage restrictions. This paper aims to compare various FW control strategies and analyze their effectiveness in maximizing the speed of PMSMs in EV applications while ensuring stable and reliable performance. Various FW approaches, such as voltage-based control, current-based control, and advanced predictive control methods, are examined to determine how each method balances speed enhancement with torque output and efficiency. In addition, other control strategies are crucial for optimizing the performance of PMSMs in electric vehicles. Among the most popular methods for controlling torque and speed in PMSMs are Field-Oriented Control (FOC), Direct Torque Control (DTC), and Vector Current Control (VCC). Each control technique has advantages and is frequently cited in the literature as a crucial instrument for improving EV motor control. This article provides a comprehensive evaluation of FW methods, highlighting their respective advantages and disadvantages by synthesizing the findings of numerous studies. In addition to outlining future research directions in FW control for EV applications, this study provides essential insights and valuable suggestions to help select FW control techniques for various PMSM types and operating conditions.

Rights

© 2025 by the authors.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) License.

Data Availability

Article states: "No new data were created or analyzed in this study."

Original Publication Citation

Alwaqfi, S., Alzayed, M., & Chaoui, H. (2025). Flux-weakening control methods for permanent magnet synchronous machines in electric vehicles at high speed. Electronics, 14(19), 3779. https://doi.org/10.3390/electronics14193779

ORCID

0000-0001-8728-3653 (Chaoui)

Share

COinS