Date of Award

Summer 2012

Document Type


Degree Name

Doctor of Philosophy (PhD)


Engineering Management

Committee Director

Ghaith Rabadi

Committee Member

Resit Unal

Committee Member

Holly Handley

Committee Member

Okay Isik


Due to the rapid increase of dimensions and complexity of real life problems, it has become more difficult to find optimal solutions using only exact mathematical methods. The need to find near-optimal solutions in an acceptable amount of time is a challenge when developing more sophisticated approaches. A proper answer to this challenge can be through the implementation of metaheuristic approaches. However, a more powerful answer might be reached by incorporating intelligence into metaheuristics.

Meta-RaPS (Metaheuristic for Randomized Priority Search) is a metaheuristic that creates high quality solutions for discrete optimization problems. It is proposed that incorporating memory and learning mechanisms into Meta-RaPS, which is currently classified as a memoryless metaheuristic, can help the algorithm produce higher quality results.

The proposed Meta-RaPS versions were created by taking different perspectives of learning. The first approach taken is Estimation of Distribution Algorithms (EDA), a stochastic learning technique that creates a probability distribution for each decision variable to generate new solutions. The second Meta-RaPS version was developed by utilizing a machine learning algorithm, Q Learning, which has been successfully applied to optimization problems whose output is a sequence of actions. In the third Meta-RaPS version, Path Relinking (PR) was implemented as a post-optimization method in which the new algorithm learns the "good" attributes by memorizing best solutions, and follows them to reach better solutions. The fourth proposed version of Meta-RaPS presented another form of learning with its ability to adaptively tune parameters. The efficiency of these approaches motivated us to redesign Meta-RaPS by removing the improvement phase and adding a more sophisticated Path Relinking method. The new Meta-RaPS could solve even the largest problems in much less time while keeping up the quality of its solutions.

To evaluate their performance, all introduced versions were tested using the 0-1 Multidimensional Knapsack Problem (MKP). After comparing the proposed algorithms, Meta-RaPS PR and Meta-RaPS Q Learning appeared to be the algorithms with the best and worst performance, respectively. On the other hand, they could all show superior performance than other approaches to the 0-1 MKP in the literature.