Date of Award

Winter 2007

Document Type


Degree Name

Doctor of Philosophy (PhD)


Engineering Management & Systems Engineering

Committee Director

Ghaith Rabadi

Committee Member

Andres Sousa-Poza

Committee Member

Resit Unal

Committee Member

Ali Ardalan


Scheduling has turned out to be a fundamental activity for both production and service organizations. As competitive markets emerge, Just-In-Time (JIT) production has obtained more importance as a way of rapidly responding to continuously changing market forces. Due to their realistic assumptions, job shop production environments have gained much research effort among scheduling researchers. This research develops exact and heuristic methods and algorithms to solve the job shop scheduling problem when the objective is to minimize both earliness and tardiness costs over a common due date. The objective function of minimizing earliness and tardiness costs captures the essence of the JIT approach in job shops. A dynamic programming procedure is developed to solve smaller instances of the problem, and a Multi-Agent Systems approach is developed and implemented to solve the problem for larger instances since this problem is known to be NP-Hard in a strong sense. A combinational auction-based approach using a Mixed-Integer Linear Programming (MILP) model to construct and evaluate the bids is proposed. The results showed that the proposed combinational auction-based algorithm is able to find optimal solutions for problems that are balanced in processing times across machines. A price discrimination process is successfully implemented to deal with unbalanced problems. The exact and heuristic procedures developed in this research are the first steps to create a structured approach to handle this problem and as a result, a set of benchmark problems will be available to the scheduling research community.