Document Type
Article
Publication Date
2022
DOI
10.1109/ACCESS.2022.3206012
Publication Title
IEEE Access
Volume
10
Pages
100267 - 100275
Abstract
Next-generation communication networks, also known as NextG or 5G and beyond, are the future data transmission systems that aim to connect a large amount of Internet of Things (IoT) devices, systems, applications, and consumers at high-speed data transmission and low latency. Fortunately, NextG networks can achieve these goals with advanced telecommunication, computing, and Artificial Intelligence (AI) technologies in the last decades and support a wide range of new applications. Among advanced technologies, AI has a significant and unique contribution to achieving these goals for beamforming, channel estimation, and Intelligent Reflecting Surfaces (IRS) applications of 5G and beyond networks. However, the security threats and mitigation for AI-powered applications in NextG networks have not been investigated deeply in academia and industry due to being new and more complicated. This paper focuses on an AI-powered IRS implementation in NextG networks along with its vulnerability against adversarial machine learning attacks. This paper also proposes the defensive distillation mitigation method to defend and improve the robustness of the AI-powered IRS model, i.e., reduce the vulnerability. The results indicate that the defensive distillation mitigation method can significantly improve the robustness of AI-powered models and their performance under an adversarial attack.
Original Publication Citation
Catak, F. O., Kuzlu, M., Tang, H., Catak, E., & Zhao, Y. (2022). Security hardening of intelligent reflecting surfaces against adversarial machine learning attacks. IEEE Access, 10, 100267-100275. https://doi.org/10.1109/ACCESS.2022.3206012
ORCID
0000-0002-8719-2353 (Kuzlu)
Repository Citation
Ozgur Catak, Ferhat; Kuzlu, Murat; Tang, Haolin; Catak, Evren; and Zhao, Yanxiao, "Security Hardening of Intelligent Reflecting Surfaces Against Adversarial Machine Learning Attacks" (2022). Engineering Technology Faculty Publications. 167.
https://digitalcommons.odu.edu/engtech_fac_pubs/167
Included in
Artificial Intelligence and Robotics Commons, Electrical and Computer Engineering Commons, OS and Networks Commons
Comments
This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.