College
College of Sciences
Department
Mathematics and Statistics
Graduate Level
Doctoral
Graduate Program/Concentration
Applied and Computational Mathematics
Publication Date
4-2022
DOI
10.25883/npyg-sv61
Abstract
Suspensions of active polar liquid crystalline polymers (APLC) exhibit complex phenomena such as spontaneous flows, pattern formations and defects. Using the Kinetic Model, which couples the Smoluchowski Equation and the Navier-Stokes Equations, we conduct numerical simulations of APLC in a microfluidic channel to investigate the competitive effect among different material constants, such as the nematic concentration (the strength of the potential for nematic order) and active strength (the individual nano-rods strength of their individual movement) with and without a pressure gradient. Both Dirichlet and Neumann boundary conditions on the mathematical model are employed. Steady states, including isotropic and nematic states, as well as periodic states are observed. Spontaneous flows reveal interesting geometries in polarity vector orientation and nematic director orientation, such as flow reversals and banded structures with multiple regions within the channel boundaries.
Keywords
Liquid Crystals, Numerical stability, Soft matter, Numerical simulations
Disciplines
Numerical Analysis and Computation
Files
Download Poster (576 KB)
Recommended Citation
Schenk, Lacey and Zhou, Ruhai, "Active Polar Liquid Crystal Channel Flows: Analyzing the Roles of Nematic Strength and Activation Parameter" (2022). College of Sciences Posters. 7.
https://digitalcommons.odu.edu/gradposters2022_sciences/7