Date of Award
Spring 2005
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Mechanical & Aerospace Engineering
Program/Concentration
Engineering Mechanics
Committee Director
Chuh Mei
Committee Member
Osama A. Kandil
Committee Member
Gene J.-W. Hou
Abstract
Shape Memory Alloy (SMA) has a unique ability to recover large prestrain (up to 8∼10% elongation for Nitinol, a typical SMA material) completely when the alloy is heated (e.g. aerodynamic heating) above the austenite finish temperature Af. An innovative concept is to utilize the large recovery stress by embedding the prestrained SMA in a traditional fiber-reinforced laminated composite plate, which is called SMA hybrid composite (SMAHC) plate. In this research, static thermal and aerothermal deflections, dynamic panel flutter and random response are investigated for traditional composite plates and SMAHC plates under combined aerodynamic, random and thermal loads by employing nonlinear finite element method. System equations are derived and based on classical laminated plate theory, von Karman nonlinear strain-displacement relation, first-order piston theory aerodynamics and quasi-steady thermal stress theory. Newton-Raphson iterative method is adopted for solving the static thermal and aerothermal buckling deflections. Both normal modes and new proposed aeroelastic modes are employed separately in solution procedures to transform the equations of motion in structural node degree-of-freedom (DOF) into modal equations of motion. Time domain numerical integration technique is adopted for the dynamic analysis under the combined aerodynamic, random and thermal loads.
Numerical results of isotropic, traditional composite plates and SMAHC plates are determined, compared and discussed. Various plate behaviors are studied in detail. It is demonstrated that SMAHC plates can greatly suppress or reduce thermal buckling and panel flutter as compared with the traditional composite plates. While the SMAHC plates exhibit better performance at low levels of acoustic excitations, however, the SMAHC plates do not effectively suppress random response at high levels of acoustic excitations.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/3snn-5r47
ISBN
9780542189166
Recommended Citation
Guo, Xinyun.
"Shape Memory Alloy Applications on Control of Thermal Buckling, Panel Flutter and Random Vibration of Composite Panels"
(2005). Doctor of Philosophy (PhD), Dissertation, Mechanical & Aerospace Engineering, Old Dominion University, DOI: 10.25777/3snn-5r47
https://digitalcommons.odu.edu/mae_etds/184