Date of Award
Summer 1995
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Mechanical & Aerospace Engineering
Program/Concentration
Engineering Mechanics
Committee Director
Oktay Baysal
Committee Member
Colin P. Britcher
Committee Member
Robert L. Ash
Committee Member
Neal T. Frink
Abstract
A new methodology is developed to simulate unsteady flows about prescribed and aerodynamically determined moving boundary problems. The method couples the fluid dynamics and rigid-body dynamics equations to capture the time-dependent interference between stationary and moving boundaries. The unsteady, compressible, inviscid (Euler) equations are solved on dynamic, unstructured grids by an explicit, finite-volume, upwind method. For efficiency, the grid adaptation is performed within a window around the moving object. The Eulerian equations of the rigid-body dynamics are solved by a Runge-Kutta method in a non-inertial frame of reference. The two-dimensional flow solver is validated by computing the flow past a sinusoidally-pitching airfoil and comparing these results with the experimental data. The overall methodology is used for two two-dimensional examples: the flow past an airfoil which is performing a three-degrees-of-freedom motion in a transonic freestream, and the free-fall of a store after separation from a wing-section. Then the unstructured mesh methodology is extended to three-dimensions to simulate unsteady flow past bodies in relative motion, where the trajectory is determined from the instantaneous aerodynamics. The flow solver and the adaptation scheme in three-dimensions are validated by simulating the transonic, unsteady flow around a wing undergoing a forced, periodic, pitching motion, and comparing the results with the experimental data. To validate the trajectory code, the six-degrees-of-freedom motion of a store separating from a wing was computed using the experimentally determined force and moment fields, then comparing with an independently generated trajectory. Finally, the overall methodology was demonstrated by simulating the unsteady flowfield and the trajectory of a store dropped from a wing. The methodology, its computational cost notwithstanding, has proven to be accurate, automated, easy for dynamic gridding, and relatively efficient for the required man-hours.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/bd9e-9a67
Recommended Citation
Singh, Kamakhya P..
"Dynamic Unstructured Method for Prescribed and Aerodynamically Determined Relative Moving Boundary Problems"
(1995). Doctor of Philosophy (PhD), Dissertation, Mechanical & Aerospace Engineering, Old Dominion University, DOI: 10.25777/bd9e-9a67
https://digitalcommons.odu.edu/mae_etds/189