Date of Award
Spring 1981
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Mechanical & Aerospace Engineering
Program/Concentration
Mechanical Engineering
Committee Director
Surendra N. Tiwari
Committee Member
Joel S. levine
Committee Member
Robert Ash
Committee Member
A. Sidney Roberts, Jr.
Committee Member
Billy T. Upchurch
Abstract
A one-dimensional photochemical model of the troposphere containing the species of the nitrogen, oxygen, carbon, hydrogen, and sulfur families has been developed and used to investigate the vertical profiles and the natural (including atmospheric chemical reactions) and anthropogenic sources and sinks of these species. The species continuity equations are solved numerically applying prescribed boundary conditions. The vertical flux is simulated by use of the parameterized eddy diffusion coefficients. Heterogeneous losses (e.g. rainout, gas-to-particle chemistry, and dry deposition), are parameterized to make calculated profiles consistent with measurements. The photochemical model is coupled to a radiative transfer model that calculates the radiation field due to the incoming solar radiation which initiates much of the photochemistry of the troposphere. Comparisons of vertical profiles of tropospheric species are made between the Leighton approximation, widely used in most tropospheric models, and the detailed radiative transfer matrix inversion model used in this study. The radiative transfer code includes the effects of multiple scattering due to molecules and aerosols, pure absorption and surface albedo on the transfer of incoming solar radiation. The results indicate that significant differences exist for several key photolysis frequencies and species number density profiles between the Leighton approximation and the profiles generated with the more detailed radiative transfer matrix inversion technique used in this study. Most species show enhanced vertical profiles when the more realistic treatment of the incoming solar radiation field is included. Furthermore, most species increase in concentration as a function of increasing surface albedo. A few species, notably ozone, exhibit decreased levels of concentration when the realistic radiative transfer model is used. The effect of the detailed treatment of incoming solar radiation on the photochemistry of the troposphere is discussed.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/c3m6-b817
Recommended Citation
Augustsson, Tommy R..
"Effects of Multiple Scattering and Surface Albedo on the Photochemistry of the Troposphere"
(1981). Doctor of Philosophy (PhD), Dissertation, Mechanical & Aerospace Engineering, Old Dominion University, DOI: 10.25777/c3m6-b817
https://digitalcommons.odu.edu/mae_etds/214