Date of Award
Summer 1984
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Mechanical & Aerospace Engineering
Program/Concentration
Mechanical Engineering
Committee Director
S. N. Tiwari
Committee Member
O. A. Kandil
Committee Member
C. H. Liu
Committee Member
J. M. Kuhlman
Committee Member
C. H. Cooke
Abstract
The small disturbance potential flow theory is applied to determine the lift of an airfoil in a nonuniform parallel stream. The given stream is replaced by an equivalent stream with a certain number of velocity discontinuities, and the influence of these discontinuities is obtained by the method of images. Next, this method is extended to the problem of an airfoil in a nonuniform stream of smooth velocity profile. This model allows perturbation velocity potential in a rotational undisturbed stream. A comparison of these results with numerical solutions of Euler equations indicates that, although approximate, the present method provides useful information about the interaction problem while avoiding the need to solve the Euler equations.
The assumptions of the classical lifting line theory applied to the wing-slipstream interaction problem are scrutinized. One of the assumptions (uniform velocity in the slipstream) of the classical theory is dropped, and the governing equations are derived for the spanwise lift distribution on a wing in a single axisymmetric slipstream. Spanwise lift and induced drag distributions are obtained for two typical cases, and the effects of nonuniformity in the slipstream velocity profile are examined.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/ezag-d204
Recommended Citation
Prabhu, Ramadas K..
"Studies on the Interference of Wings and Propeller Slipstreams"
(1984). Doctor of Philosophy (PhD), Dissertation, Mechanical & Aerospace Engineering, Old Dominion University, DOI: 10.25777/ezag-d204
https://digitalcommons.odu.edu/mae_etds/262