Date of Award
Spring 1993
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Mechanical & Aerospace Engineering
Program/Concentration
Mechanical Engineering
Committee Director
Surendra N. Tiwari
Committee Member
Robert E. Smith
Committee Member
Arthur C. Taylor, III
Committee Member
John J. Swetits
Committee Member
Gene Hou
Abstract
An algorithm is developed to obtain the grid sensitivity with respect to design parameters for aerodynamic optimization. Two distinct parameterization procedures are developed for investigating the grid sensitivity with respect to design parameters of a wing-section as an example. The first procedure is based on traditional (physical) relations defining NACA four-digit wing-sections. The second is advocating a novel (geometrical) parameterization using spline functions such as NURBS (Non-Uniform Rational B-Splines) for defining the wing-section geometry. An inter-active algebraic grid generation technique, known as Two-Boundary Grid Generation (TBGG) is employed to generate C-type grids around wing-sections. The grid sensitivity of the domain with respect to design and grid parameters has been obtained by direct differentiation of the grid equations. A hybrid approach is proposed for more geometrically complex configurations. A comparison of the sensitivity coefficients with those obtained using a finite-difference approach is made to verify the feasibility of the approach. The aerodynamic sensitivity coefficients are obtained using the compressible two-dimensional thin-layer Navier-Stokes equations. An optimization package has been introduced into the algorithm in order to optimize the wing-section surface using both physical and geometric parameterization. Results demonstrate a substantially improved design, particularly in the geometric parameterization case.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/mqp6-9r54
Recommended Citation
Sadrehaghighi, Ideen.
"Grid Sensitivity for Aerodynamic Optimization and Flow Analysis"
(1993). Doctor of Philosophy (PhD), Dissertation, Mechanical & Aerospace Engineering, Old Dominion University, DOI: 10.25777/mqp6-9r54
https://digitalcommons.odu.edu/mae_etds/270