Date of Award
Fall 1991
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Mechanical & Aerospace Engineering
Program/Concentration
Engineering Mechanics
Committee Director
Chuh Mei
Committee Director
Gene J.-W. Hou
Committee Member
Thomas E. Alberts
Committee Member
Duc T. Nguyen
Committee Member
Ptamote Dechaumphai
Committee Member
Charles P. Shore
Abstract
A frequency domain solution method for nonlinear panel flutter with thermal effects using a consistent finite element formulation has been developed. The von Karman nonlinear strain-displacement relation is used to account for large deflections, the quasi-steady first-order piston theory is employed for aerodynamic loading and the quasi-steady thermal stress theory is applied for the thermal stresses with a given change of the temperature distribution, ΔΤ (x, y, z). The equation of motion under a combined thermal-aerodynamic loading can be mathematically separated into two equations and then solved in sequence: (1) thermal-aerodynamic postbuckling and (2) limit-cycle oscillation. The Newton-Raphson iteration technique is used to solve the nonlinear algebraic equations and an updated linearized eigen-solution procedure is adopted to solve the nonlinear differential equations. The finite-element frequency domain solution results are compared with numerical time integration results. Limit-cycle responses, flutter boundaries, snap-through areas and stress distributions are obtained from the present analyses. The effects of different temperature distributions, panel aspect ratios and boundary support conditions are investigated.
The influence of temperature and dynamic pressure on panel fatigue life is also presented. The relation of dynamic pressure versus panel life time at a given temperature is established and an endurance and failure dynamic pressures on panel fatigue life can be estimated.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/m7g5-bn94
Recommended Citation
Xue, David Y..
"Finite Element Frequency Domain Solution of Nonlinear Panel Flutter With Temperature Effects and Fatigue Life Analysis"
(1991). Doctor of Philosophy (PhD), Dissertation, Mechanical & Aerospace Engineering, Old Dominion University, DOI: 10.25777/m7g5-bn94
https://digitalcommons.odu.edu/mae_etds/294
Included in
Applied Mechanics Commons, Engineering Mechanics Commons, Structures and Materials Commons