Date of Award
Fall 2020
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Mechanical & Aerospace Engineering
Program/Concentration
Aerospace Engineering
Committee Director
Oleksandr Kravchenko
Committee Member
Gene Hou
Committee Member
Miltos Kotinis
Committee Member
Andrew E. Lovejoy
Abstract
Commercial and private aircraft have a need for strong yet light materials in order to have the most ideal performance possible. This study looks at the use of thin-ply composite materials to improve the performance of aircraft structures by means of weight savings and/or strength increase when compared to laminates that are composed of exclusively standard-ply materials. In order to perform an investigation based solely on finite element analysis, validation efforts were performed using test data from open hole tension, open hole compression, notched tension, and notched compression specimens. Once the models were validated sufficiently, the same modeling practices were used to compare laminates with varying ply angle orientations and various laminate stacking sequences. Initial investigations showed that for a one-to-one comparison of standard-ply laminates to hybrid laminates, there can be up to a 10% tensile load advantage, as well as an over 40% compressive load advantage when considering the final failure load of a small notched specimen. Secondary investigations showed that changing the ply angle orientation away from a more typical 45° ply to angles at various increments of 10° and 15° can yield both tensile and compressive advantages simultaneously. A final investigation determined that by adding or removing certain plies from the laminate, the previously mentioned tension and compression advantages can be expanded upon for failure load advantages up to 65% higher than baseline specimens, as well as the ability to potentially change failure modes. All of these load and damage mechanism advantages also come with the added benefit of weight savings between 10-25% of the baseline specimen original weight. The study presented herein shows initial successes in determining laminates that will reduce weight while increasing strength under various loading conditions.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/0w6g-ah98
ISBN
9798557053341
Recommended Citation
Zahn, Alana M..
"Finite Element Analysis Investigation of Hybrid Thin-Ply Composites for Improved Performance of Aerospace Structures"
(2020). Master of Science (MS), Thesis, Mechanical & Aerospace Engineering, Old Dominion University, DOI: 10.25777/0w6g-ah98
https://digitalcommons.odu.edu/mae_etds/323
Included in
Aerospace Engineering Commons, Materials Science and Engineering Commons, Mechanical Engineering Commons