Date of Award

Fall 12-2021

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Mechanical & Aerospace Engineering

Program/Concentration

Mechanical Engineering

Committee Director

Oleksandr Kravchenko

Committee Member

Drew Landman

Committee Member

Mileta Tomovic

Abstract

The aim of this work is to study the effect of post-processing on additive manufactured (AM) continuous carbon fiber reinforced plastics (CFRPs) performance. As-printed AM CFRPs do not perform as well as conventionally manufactured CFRPs with the same composition. Possible improvements to AM CFRP performance include annealing and applying uniaxial pressure with elevated temperature. Samples were subjected to pressure and temperature treatments and annealing at a constant temperature. Treated materials were subjected to three-point bending tests, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) to characterize and assess sample performance. Results were assessed for flexural strength, flexural modulus, void content, fiber content, and layer thickness. Increased temperature combined with pressure in post-processing resulted in higher flexural modulus, higher maximum flexural stress, and decreased void content. Void content decreased with increasing temperature and pressure.

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

DOI

10.25777/02cr-0x33

ISBN

9798780600589

Share

COinS